Low-Cost Fabrication of Tungsten-Rhenium Alloys for Friction Stir Welding Applications

Abstract

Friction stir welding (FSW) of high-melting temperature alloys, such as steel and Inconel, requires tooling that can survive under the applied loads at the elevated temperatures. Tungsten-Rhenium (W-Re) alloys are a suitable candidate for this application; however, the costs typically associated with achieving the required densities and grain structure for the tooling are high due to the lengthy traditional processing required. Further costs are incurred in machining the starting bar stock to the final FSW tooling configuration. An alternate processing method is used in this study to shorten the fabrication time using direct current sintering which rapidly consolidates the starting powders at lower temperatures than used in traditional powder metallurgy. Although this process enables retention of the fine grain size, the sintering time is too short to form the desired single, solid phase. Therefore, the specimens were subjected to a post-consolidation heat treatment to fully solutionize the W matrix. Once the desired density and solid solution phase was verified in coupons, the final processing parameters were used to consolidate a net shape tool for FSW.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    P.L. Threadgill: Report 761/2003, TWI, Cambridge, 2003.

    Google Scholar 

  2. 2.

    2. R.S. Mishra and M.W. Mahoney: Friction stir welding and processing,” ASM Intl. Publisher, Materials Park, OH, 2007, pp. 8-12.

    Google Scholar 

  3. 3.

    3. J. Barry, G. Akdogan, R. Smyth, F. McAvinue and P. O’Halloran: Industrial Diamond Review, 2006, vol. 66, no. 3, pp. 46-53.

    Google Scholar 

  4. 4.

    4. T.K. Harris, E.J. Brookes and C.J. Taylor: Intl J. Refractory Metals & Hard Materials, 2001, vol. 19, no. 4-6, pp. 267-273.

    CAS  Article  Google Scholar 

  5. 5.

    5. Z. Iqbal, N. Saheb and A.R. Shuaib: J. Alloys & Compounds, 2016, vol. 674, pp. 189-199.

    CAS  Article  Google Scholar 

  6. 6.

    6. B. Thompson and S.S. Babu: Welding Journal, 2010, vol. 89, pp. 256s–261s.

    Google Scholar 

  7. 7.

    7. P.N. Browning, S. Alagic, A. Kulkarni, L. Matson and J. Singh: MSEA, 2016, vol. A674, pp. 701-712.

    Article  CAS  Google Scholar 

  8. 8.

    8. O. El-Atwani, D.V. Quach, M. Efe, P.R. Cantwell, B. Heim, B. Schultz, E.A. Stach, J.R. Groza and J.P. Allain: MSEA, 2011, vol. A528, pp. 5670-5677.

    Article  CAS  Google Scholar 

  9. 9.

    W.D. Klopp: Report No 4955, NASA Lewis Research Center, Cleveland OH, 1968.

    Google Scholar 

  10. 10.

    M. Dickinson: Trans. Am. Soc. Met., 1959, vol. 51, pp. 758–771.

    Google Scholar 

  11. 11.

    11 C.T. Sims and RI. Jaffee: Trans. ASM, 1960, vol. 52, pp. 929-941.

    CAS  Google Scholar 

  12. 12.

    W.D. Klopp, W.R Witzke and P.L. Raffo: Report no 3483. NASA Lewis Research Center, Cleveland, OH, 1966.

    Google Scholar 

  13. 13.

    13. P.L. Raffo: J. Less-Common Metals, 1969, vol. 17, pp. 133-143.

    CAS  Article  Google Scholar 

  14. 14.

    L.S. Rubenstein: Report no 4379, NASA Lewis Research Center, Cleveland, OH, 1968.

    Google Scholar 

  15. 15.

    W.D. Klopp and W.R Witzke (1969) Report 5348. NASA Lewis Research Center, Cleveland, OH.

    Google Scholar 

  16. 16.

    D. Klopp, P.L. Raffo, W.R. Witzke (1971) J. Org. Met. 6:27-38.

    Article  Google Scholar 

  17. 17.

    W.D. Klopp and W.R Witzke (1971) J. Less Common Met., 24:427-443.

    CAS  Article  Google Scholar 

  18. 18.

    18. D. Lee, M.A. Umer, H.J. Ryu and S.H. Hong: Int. J. Refract. Met. Hard Mater., 2014, vol. 44, pp. 49-53.

    CAS  Article  Google Scholar 

  19. 19.

    19. A. Luo, K.S. Shin and D.I. Jacobson: Acta Metall. Mater., 1992, vol. 40, pp. 2225-2232.

    CAS  Article  Google Scholar 

  20. 20.

    20. A. Luo, D.I. Jacobson and K.S. Shin: Scripta Metall. Mater., 1989, vol. 23, pp. 397-400.

    CAS  Article  Google Scholar 

  21. 21.

    D. Lee, M.A. Ulmer, H.J. Ryu and S.H. Hong: Int. J. Refract. Met. Hard Mater., 2014, vol. 44, pp. 49-53.

    CAS  Article  Google Scholar 

  22. 22.

    22. T.B. Massalski: Binary Alloy Phase Diagrams, ASM Intl. Publisher, Materials Park, OH, 1990.

    Google Scholar 

  23. 23.

    B.D. Bryskin and J.-C. Carlén: Proc. 127th TMS Annual Meeting & Exhibition, San Antonio, TX, 1998.

  24. 24.

    B.D. Bryskin and J.-C. Carlén: Matls. & Mfg. Proc., 1996, vol. 11/1, pp. 67–81.

  25. 25.

    25. R.M. German: Sintering: Powder metallurgy Science, Metal Powder Industries Federation Pub., Princeton, NJ, 1984, pp. 145-200.

    Google Scholar 

  26. 26.

    26. E.Y. Ivanov, C. Suryanarayana and B.D. Bryskin: MSEA, 1998, vol. A251, pp. 255-261.

    CAS  Article  Google Scholar 

  27. 27.

    27. F.H. Froes, B.D. Bryskin, C.R. Clark, C. Suryanarayana and E.G. Baburaj: Rhenium and Rhenium alloys, TMS Publisher, Warrendale, PA, 1997, pp. 569-583.

    Google Scholar 

  28. 28.

    E. Ivanov and C. Wickersham: Proc. Intl. Plansee Seminar, Austria Publisher, Reutte, 1997, vol. 1, pp. 207–216.

  29. 29.

    29. M.S. Boldrick, E. Yang and C.N.J. Wagner: J. Non-Cryst. Solids, 1992, vol. 150, pp. 478-482.

    CAS  Article  Google Scholar 

  30. 30.

    I. Charit: Nuclear Energy University Project No. 09-775, Final Report CFP-09-775, DOE Publisher, New York, 2012.

  31. 31.

    31. G. Lee, J. McKittrick, E. Ivanov and E.A. Olevsky: Int. J. Refract. Met. Hard Mater., 2016, vol. 61, p. 22-29.

    CAS  Article  Google Scholar 

  32. 32.

    32. N.C. Kothari: J. Less-Common Met. 1963, vol 5, pp. 140-150.

    CAS  Article  Google Scholar 

  33. 33.

    33. T. Vasilos and J.T. Smoth: J. Appl. Phys., 1964, vol. 35, pp. 215-217.

    CAS  Article  Google Scholar 

  34. 34.

    34. Z. Gao, G. Viola, B. Milsom, I. Whitaker, H. Yan and M. Reece: MMTB, 2012, vol. 43, pp. 1608-1614.

    Article  CAS  Google Scholar 

  35. 35.

    35. Q. Wei, T. Jiao, K.T. Ramesh, E. Ma, L.J. Kecskes, L. Magness, R. Dowding, V.U. Kazykhanov, R.Z. Valiev: Acta Mater., 2006, vol. 54, pp. 77-87.

    CAS  Google Scholar 

  36. 36.

    36. Q. Wei, H.T. Zhang, B.E. Schusterb, K.T. Ramesh, R.Z. Valiev, L.J. Kecskes, R.J. Dowding, L. Magness and K. Cho: Acta Mater., 2006, vol. 54, pp. 4079-4089.

    CAS  Article  Google Scholar 

  37. 37.

    37. F. V. Lenel: JOM, 1955, vol. 7, pp. 158-167.

    CAS  Article  Google Scholar 

  38. 38.

    J. R. Groza: AM Metals Handbook, Powder Metal Technologies & Applications, Vol. 7, ASM International, Materials Park, OH, 1998, pp. 583–589.

    Google Scholar 

  39. 39.

    39. J.R. Groza and A. Zavaliangos: MSEA, 2000, vol. A287, pp. 171-177.

    CAS  Article  Google Scholar 

  40. 40.

    40. J.R. Groza, M. Garcia and J.A. Schneider: J. Mat. Res., 2001, vol. 16/1, pp. 286-292.

    CAS  Article  Google Scholar 

  41. 41.

    41. R. Orru, R. Licheri, A.M. Locci, A. Cincotti and G. Cao: Mat. Sci. & Engr. R., 2009, vol. 63, pp. 127-287.

    Article  CAS  Google Scholar 

  42. 42.

    42. Z.A. Munir, D.V. Quach and M. Ohyanagi: J. Am. Ceram. Soc., 2011, vol. 94/1, pp. 1-19.

    CAS  Article  Google Scholar 

  43. 43.

    K.C. Cho, R.H. Woodman, B.R. Koltz, and R.J. Dowding: Matls & Mfgt Proc., 2004, vol. 19/4, pp. 619–30.

  44. 44.

    44. M. Yao, Z. Zhangjian, T. Jun and L. Ming: Rare Metal Matl. & Engr., 2011, vol. 40, pp. 4-8.

    Article  Google Scholar 

  45. 45.

    45. J. Choi, H-M. Sung, K-B. Roh, S-H. Hong, G-H. Kim and H.N. Han: Int. J. Refract. Met. Hard Mater., 2017, vol. 69, pp. 164-169.

    CAS  Article  Google Scholar 

  46. 46.

    T. Ryu, K.S. Huang, Y.J. Choi and H.Y. Sohn: Intl. J. Refract. Met. Hard Mater, 2009, vol. 27, pp. 701-704.

    CAS  Article  Google Scholar 

  47. 47.

    47. Z. Gao, G. Viola, B. Milsom, I. Whitaker, H. Yan and M.J. Reece: MMTB, 2012, vol. 43, pp. 1608-1614.

    Article  CAS  Google Scholar 

  48. 48.

    48. N. Van Minh, G. Karunakaran and Y. Konyukhv: J. Clust. Sci., 2017, vol. 28, p. 2905-2917.

    Article  CAS  Google Scholar 

  49. 49.

    49. W. Song and X. Ming: Applied Mech. & Matl., 2012, vol. 236-237, p. 113-117.

    Google Scholar 

  50. 50.

    50. A. Monda, A. Upadhyaya and D. Agrawal: Int. J. Refract. Met. Hard Mater., 2010, vol. 28, pp. 597-600.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors (JAS, JT, LF) gratefully acknowledge the funding support provided by NASA-MSFC Cooperative Agreement for Dual Use Technology Development, Grant No. 80MSFC17M0008. All powders and their preparation used in this study were provided by Re Alloys.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Judy Schneider.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 14, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schneider, J., Terrell, J., Farris, L. et al. Low-Cost Fabrication of Tungsten-Rhenium Alloys for Friction Stir Welding Applications. Metall Mater Trans B 51, 35–44 (2020). https://doi.org/10.1007/s11663-019-01726-6

Download citation