Influence of Particle Size on Apparent Diffusivity During Spark Plasma Sintering of Crystalline Powders

Abstract:

A theoretical framework is presented to determine an apparent diffusivity D during powder sintering and further elucidate the underlying interrelation between D and shrinkage behaviors of powders. Furthermore, to eliminate the influence of crystalline defects that are typically present in raw powders, complete crystallization of metallic glass powders is performed to allow the investigation of the influence of particle size solely on powder densification. Furthermore, to validate the framework developed, Ti40.6Zr9.4Cu37.5Ni9.4Sn3.1 crystalline alloy powders constituting particles with different sizes are examined to establish a correlation between D and the sintering behaviors of the powders. The findings show that the value of the apparent diffusivity D increases with the increasing particle size, which accelerates powder densification during spark plasma sintering. Furthermore, the results quantitatively support the argument that particle size can affect atomic diffusion during powder sintering.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

ρ :

Relative density

ρ 0 :

Initial relative density

H :

Powder height (mm)

H 0 :

Initial powder height (mm)

\( \dot{\rho } \) :

Densification rate (s−1)

T :

Time (s)

γ :

Surface energy (J/m2)

L :

Average particle size (μm)

ΔH/H 0 :

Powder shrinkage

B :

Geometry factor (constant)

η :

Viscosity, (pa s)

P :

The applied pressure (MPa)

a :

Average grain size (nm)

D :

Diffusivity (m2/s)

δ :

Atom diameter (Å)

k :

Boltzmann constant (J/K)

T :

Temperature (K)

D 0 :

Diffusion constant (m2/s)

\( Q \) :

Diffusion activation energy (kJ/mol)

C :

Heating rate (K/s)

\( D^{P} \) :

Pressure-related diffusivity (m2/s)

\( D_{0}^{P} \) :

Pressure-related diffusion constant (m2/s)

\( D_{0}^{T} \) :

Total diffusion constant (m2/s)

\( \Delta T \) :

The localized overheating (K)

X :

Distance from the surface of a powder (μm)

R :

The radius of powder particle, (μm)

I :

Current (A)

\( \rho_{r} \) :

Electrical resistivity (Ω cm)

\( \Delta t \) :

Pulse time (s)

\( C_{V} \) :

Heat capacity (J/K/mol)

\( \rho_{m} \) :

Density (g/cm3)

Φ :

Inner diameter of the die (mm)

References

  1. 1.

    S.J.L. Kang (ed.), Sintering: Densification, Grain Growth and Microstructure, Elsevier Butterworth-Heinemann, Oxford, 2005.

    Google Scholar 

  2. 2.

    M. Schnabel, C. Weiss, M. Canino, T. Rachow, P. Löper, C. Summonte, S. Mirabella, S. Janz, P.R. Wilshaw: Appl. Phys. Lett., 2014, vol. 104, pp. 213108–213122.

    Article  Google Scholar 

  3. 3.

    Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763-777.

    CAS  Article  Google Scholar 

  4. 4.

    Z.H. Zhang, Z.F. Liu, J.F. Lu, X.B. Shen, F.C. Wang, Y.D. Wang: Scr. Mater., 2014, vol. 81, pp. 56-59.

    CAS  Article  Google Scholar 

  5. 5.

    L.H. Liu, C. Yang, Y.G. Yao, F. Wang, W.W. Zhang, Y. Long, Y.Y. Li: Intermetallics., 2015, vol. 66, pp. 1-7.

    Article  Google Scholar 

  6. 6.

    R.T. Li, Z.L. Dong, K.A. Khor: Scr. Mater., 2016, vol. 144, pp. 88-92.

    Article  Google Scholar 

  7. 7.

    7. Z. Trzaska, G. Bonnefont, G. Fantozzi, J.-P. Monchoux: Acta Mater., 2017, vol. 135, pp. 1-13.

    CAS  Article  Google Scholar 

  8. 8.

    C. Yang, M.D. Zhu, X. Luo, L.H. Liu, W.W. Zhang, Y. Long, Z.Y. Xiao, Z.Q. Fu, L.C. Zhang, E.J. Lavernia: Scr. Mater., 2017, vol. 139, pp. 96-99.

    CAS  Article  Google Scholar 

  9. 9.

    Z. Trzaska, A. Couret, J.-P. Monchoux: Acta Mater., 2016, vol. 118, pp. 100-108.

    CAS  Article  Google Scholar 

  10. 10.

    J.E. Alaniz, A.D. Dupuy, Y. Kodera, J.E. Garay: Scr. Mater., 2014, vol. 92, pp. 7-10.

    CAS  Article  Google Scholar 

  11. 11.

    T. Paul, S.P. Harimkar: Scr. Mater., 2017, vol. 126, pp. 37-40.

    CAS  Article  Google Scholar 

  12. 12.

    S. Xie, R. Li, T. Yuan, M. Zhang, M. Wang, H. Wu, F. Zeng: Scr. Mater., 2018, vol. 149, pp. 125-128.

    CAS  Article  Google Scholar 

  13. 13.

    V.V. Dabhade, T.R.R. Mohan, P. Ramakrishnan: Mater. Res. Bull., 2007, vol. 42, pp. 1262-1268.

    CAS  Article  Google Scholar 

  14. 14.

    N. Chawake, P. Ghosh, L. Raman, A.K. Srivastav, T. Paul, S.P. Harimkar, J. Eckert, R.S. Kottada: Scr. Mater., 2019, vol. 161, pp. 36-39.

    CAS  Article  Google Scholar 

  15. 15.

    X. Song, X. Liu, J. Zhang: J. Am. Ceram. Soc., 2006, vol. 89, pp. 494-500.

    CAS  Article  Google Scholar 

  16. 16.

    S. Diouf, A. Molinari: Powder Technol., 2012, vol. 221, pp. 220-227.

    CAS  Article  Google Scholar 

  17. 17.

    C. Yang, Y.J. Zhao, L.M. Kang, D.D. Li, W.W. Zhang, L.C. Zhang: Mater. Lett., 2018, vol. 210, pp. 169-172.

    CAS  Article  Google Scholar 

  18. 18.

    M.B. Shongwe, M.M. Ramakokovhu, S. Diouf, M.O. Durowoju, B.A. Obadele, R. Sule, M.L. Lethabane, P.A. Olubambi: J. Alloy. Compd., 2016, vol. 678, pp. 241-248.

    CAS  Article  Google Scholar 

  19. 19.

    Z. Zhang, F. Wang, L. Wang, S. Li, S. Osamu: Mater. Lett., 2008, vol. 62, pp. 3987-3990.

    CAS  Article  Google Scholar 

  20. 20.

    T. Paul, N. Chawake, R.S. Kottada, S.P. Harimkar: J. Alloy. Compd., 2018, vol. 738, pp. 10-15.

    CAS  Article  Google Scholar 

  21. 21.

    S. Decker, S. Martin, L. Krüger: Metall. Mater. Trans. A, 2015, vol. 47, pp. 170-177.

    Google Scholar 

  22. 22.

    P. Heitjans, J. Kärger (ed.), Diffusion in Condensed Matter, Springer Verlag, Berlin Heidelberg, 2005.

    Google Scholar 

  23. 23.

    A. Inoue: Acta Mater., 2000, vol. 48, pp. 279-306.

    CAS  Article  Google Scholar 

  24. 24.

    H. Zhu, R.S. Averback: Mater. Sci. Eng. A, 1995, vol. 204, pp. 96-100.

    Article  Google Scholar 

  25. 25.

    R.S. Averback, H. Zhu, R. Tao, H. Hofler, in: D.L. Bourell (Ed.), Synthesis and Processing of Nanocrystalline Powder, TMS, Warrendale, 1996, p. 203.

    Google Scholar 

  26. 26.

    S.Y. Gómez, D. Hotza: J. Eur. Ceram. Soc, 2018, vol. 38, pp. 1736-1741.

    Article  Google Scholar 

  27. 27.

    V.V. Dabhade, T.R. Mohan, P. Ramakrishnan: Mater. Sci. Eng. A, 2007, 452-453, 386-394.

    Article  Google Scholar 

  28. 28.

    J.R. Groza, C.C. Koch (Ed.), Nanostructured Materials: Processing, Properties and Applications, Noyes Publication, New York, 2002, pp. 123–124.

    Google Scholar 

  29. 29.

    Q. Chen, C.Y. Tang, K.C. Chan, L. Liu: J. Alloy. Compd., 2013, vol. 557, pp. 98-101.

    CAS  Article  Google Scholar 

  30. 30.

    X.X. Li, C. Yang, T. Chen, Z.Q. Fu, Y.Y. Li, O.M. Ivasishin, E.J. Lavernia: Scr. Mater., 2018, vol. 151, pp. 47-52.

    CAS  Article  Google Scholar 

  31. 31.

    J. Frenkel: J. Phys., 1945, vol. 9, pp. 385-391.

    Google Scholar 

  32. 32.

    X.X. Li, C. Yang, T. Chen, Z.Q. Fu, Y.Y. Li, O.M. Ivasishin, E.J. Lavernia: Materialia., 2019, vol. 6, pp. 100334–100338.

    Article  Google Scholar 

  33. 33.

    A. Antonelli, J. Bernholc: Phys. Rev. B., 1989, vol. 40, pp. 10643–10646.

    CAS  Article  Google Scholar 

  34. 34.

    B.Y. Pines: J. Techn. Physics., 1946, vol. 16, p.737.

    CAS  Google Scholar 

  35. 35.

    P.Y. Huang (ed.), Principle of Power Metallurgy, Metallurgical industry press, Beijing, 2008.

    Google Scholar 

  36. 36.

    X.X. Li, C. Yang, H.Z. Lu, X. Luo, Y.Y. Li, O.M. Ivasishin: J. Alloy. Compd., 2019, vol. 787, pp. 112-122.

    CAS  Article  Google Scholar 

  37. 37.

    R.M. German (ed.), Sintering Theory and Practice, Wiley, New York, 1996.

    Google Scholar 

  38. 38.

    38. V.A. Khonik, N.P. Kobelev: Phys. Rev. B, 2008, vol. 77, pp. 133203–133205.

    Article  Google Scholar 

  39. 39.

    L.M. Kang, C. Yang: Adv. Eng. Mater., 2019, https://doi.org/10.1002/adem.201801359

    Article  Google Scholar 

  40. 40.

    T. Paul, S.P. Harimkar: J. Phys. D: Appl. Phys., 2017, 50, pp. 27LT01–27LT04

    Article  Google Scholar 

  41. 41.

    M. Köppers, C. Herzig, M. Friesel, Y. Mishin: Acta Mater., 1997, vol. 45, pp. 4181-4191.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51574128), the Guangdong Natural Science Foundation for Research Team (No. 2015A030312003), the Guangdong Application-oriented Special Funds for Science and Technology R&D (No. 2016B090931002), and the Fundamental Research Funds for the Central Universities (No. 2017PY014). We thank The Editing Team from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 2, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 130 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X.X., Yang, C., Liu, Z. et al. Influence of Particle Size on Apparent Diffusivity During Spark Plasma Sintering of Crystalline Powders. Metall Mater Trans B 50, 2843–2852 (2019). https://doi.org/10.1007/s11663-019-01715-9

Download citation