Numerical Simulation and Experimental Investigation of Nitrogen Transfer Mechanism from Gas to Liquid Steel During Pressurized Electroslag Remelting Process

Abstract

Since the gas–slag–metal three-phase transfer mechanism of nitrogen is not suitable to account for the nitrogen pickup during pressurized electroslag remelting process, the laboratory experiments have been carried out to study the transfer mechanism of nitrogen using different nitrogen partial pressures and electrode immersion depths. Then, two possible transfer mechanisms of nitrogen have been proposed, and a 2D transient numerical model has been developed to investigate the behavior of nitrogen based on the new proposed mechanisms. The simulated results are compared with the experiment to validate the feasibility of new proposed mechanism. The results show that the nitrogen content in ingot increases with the increasing nitrogen partial pressure and decreasing electrode immersion depth. At the current experimental condition, the electrode immersion depth seems to play a more important role in the nitrogen pickup than the nitrogen partial pressure. Due to the limits of thermodynamic and kinetic conditions, the nitrogen pickup is negligible via the transfer from gas to liquid metal through molten slag whether nitrogen chemically or physically dissolves into slag. The mechanism that nitrogen directly reacts with the partially exposed liquid metal film under the electrode tip due to the fluctuation of gas/slag interface could reasonably account for the experimental results. Furthermore, based on the mechanism, the predicted variation tendency of nitrogen content in ingot is in agreement with the experiment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    H. Feng, H. Li, X. Wu, X. Wu, Z. Jiang, S. Zhao, T. Zhang, D. Xu, S. Zhang, H. Zhu, B. Zhang and M. Yang: J. Mater. Sci. Technol., 2018, vol. 34, pp. 1781-1790.

    Article  Google Scholar 

  2. 2.

    H. Feng, Z. Jiang, H. Li, P. Lu, S. Zhang, H. Zhu, B. Zhang, T. Zhang, D. Xu and Z. Chen: Corros. Sci., 2018, vol. 144, pp. 288-300.

    Article  CAS  Google Scholar 

  3. 3.

    G. Stein and J. Menzel: Int. J. Mater. Prod. Tech., 1995, vol. 10, pp. 478-488.

    CAS  Google Scholar 

  4. 4.

    H. Zhu, Z. Jiang, H. Li, H. Feng, S. Zhang, G. Liu, J. Zhu, P. Wang, B. Zhang, G. Fan and G. Li: Metal. Mater. Trans. B, 2017, vol. 48, pp. 2493-2503.

    Article  CAS  Google Scholar 

  5. 5.

    H. Li, Z. Jiang, H. Feng, S. Zhang, L. Li, P. Han, R. Misra, J. Li: Mater. Des., 2015, vol. 84, pp. 291-299.

    Article  CAS  Google Scholar 

  6. 6.

    P. Pant, P. Dahlmann, W. Schlump and G. Stein: Steel Res. Int., 1987, vol. 58, pp. 18-25.

    Article  CAS  Google Scholar 

  7. 7.

    H. Li, Z. Jiang, Y. Cao and Z. Zhang: Int. J. Min. Met. Mater., 2009, vol. 16, pp. 387-392.

    Article  CAS  Google Scholar 

  8. 8.

    A.D. Patel, J. Reitz, J.H. Magee, R. Smith, G. Maurer, and B. Friedrich: in International Symposium on Liquid Metal Processing and Casting, Santa Fe, USA, 20–23 September, 2009, pp. 1–8.

  9. 9.

    A. Mitchell and H. Frederiksson: J. Mater. Sci., 2004, vol. 39, pp. 7275-7283.

    Article  CAS  Google Scholar 

  10. 10.

    F. Takahashi, Y. Momoi, K. Kajikaw and H. Yamada: ISIJ Int., 2015, vol.55, pp. 578-585.

    Article  CAS  Google Scholar 

  11. 11.

    M. Bartosinski, J.H. Magee, and B. Friedrich: in 1st International Conference on Ingot Casting, Rolling and Forging (ICRF), Aachen, Germany, 3–7 June, 2012, pp. 1–8.

  12. 12.

    G. Stein, J. Menzel and A. Choudhury: Steel Times, 1989, vol. 217, pp. 146-150.

    Google Scholar 

  13. 13.

    A. Carosi, B. Kleimt, G. Paura, V. Diehl, J. Schmitz, and V. Vodarek: Mastering P-ESR technology for high nitrogen steel grades for high value applications (Publication office of European Union, 2010). https://cordis.europa.eu/project/rcn/80352_en.pdf. Accessed 5 June 2019.

  14. 14.

    A. Mitchell: Superalloys 718, 625 and Various Derivatives, E.A. Loria, TMS, Pittsburgh, 1991, pp. 15–27.

    Google Scholar 

  15. 15.

    S. Hou. Shanghai metals, 1989, Vol. 11, pp. 60-61. (in Chinese).

    Google Scholar 

  16. 16.

    H. Wenz and D. Janke: Steel Res.Int., 1992, vol. 63, pp. 105-111.

    Article  CAS  Google Scholar 

  17. 17.

    H. Wenz and D. Janke: Steel Res.Int., 1992, vol. 63, pp. 47-59.

    Article  CAS  Google Scholar 

  18. 18.

    K. Nomura, B. Ozturk and R. J. Fruehan: Metall. Mater. Trans. B, 1991, vol.22, pp. 783-790.

    Article  CAS  Google Scholar 

  19. 19.

    S. J. Kong, H. Y. Hwang and H. G. Lee: Steel Res.Int., 2000, vol. 71, pp. 483-489.

    Article  CAS  Google Scholar 

  20. 20.

    K. Iuchi, K. Moritaa and N. Sano: Metall. Mater. Trans. B, 1998, vol. 29, pp. 1235-1240.

    Article  CAS  Google Scholar 

  21. 21.

    W. Y. Shin and H. G. Lee: ISIJ Int., 2001, vol. 41, pp. 239-246.

    Article  CAS  Google Scholar 

  22. 22.

    E. Martinez, V. Espejo and F. Manjarrez: ISIJ Int., 1993, vol. 33, pp. 48-52.

    Article  Google Scholar 

  23. 23.

    C. Shi, X. Chen, H. Guo, Z. Zhu and H. Ren: Steel Res. Int., 2012, vol. 83, pp. 472-486.

    Article  CAS  Google Scholar 

  24. 24.

    C. Shi and J. Park: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1139-1147.

    Article  CAS  Google Scholar 

  25. 25.

    J. Yu, Z. Jiang, F. Liu, K. Chen, H. Li and X. Geng: ISIJ Int., 2017, vol. 57, pp. 1205-1212.

    Article  CAS  Google Scholar 

  26. 26.

    J. Yu, F. Liu, Z. Jiang, C. Kang, K. Chen, H. Li and X. Geng: Steel Res. Int., 2018, vol. 89, pp. 1-11.

    Google Scholar 

  27. 27.

    J. Yu, F. Liu, H. Li, Z. Jiang, K. Chen and X. Geng: JOM, 2019, vol. 71, pp. 744-753.

    Article  Google Scholar 

  28. 28.

    J. Tanabe and H. Suito: Steel Res. Int., 1992, vol. 63, pp. 515-520.

    Article  CAS  Google Scholar 

  29. 29.

    H. Ono-Nakazato, A. Matsui, D. Miyata and T. Usui: ISIJ Int., 2003, vol. 43, pp. 975-982.

    Article  CAS  Google Scholar 

  30. 30.

    L. Jonsson, D. Sichen, P. Jönsson: ISIJ Int., 1998, vol. 38, pp. 260-267.

    Article  CAS  Google Scholar 

  31. 31.

    R.J. Fruehan: in Proceedings of the 1st international chromium steel and alloys congress, Cape Town, Johannesburg, The south African Institute of Mining and Metallurgy, 1992, vol. 2, pp. 35–41.

  32. 32.

    M. W. Davies and S. G. Meherali: Metall. Trans., 1971, vol. 2, pp. 2729-2733.

    Article  CAS  Google Scholar 

  33. 33.

    K. Schwerdtfeger and H. G. Schubert: Metall. Trans. B, 1977, vol. 8, pp. 535-540.

    Article  Google Scholar 

  34. 34.

    K. Schwerdtfeger and H. G. Schubert: Metall. Trans. B, 1977, vol. 8, pp. 689-691.

    Article  Google Scholar 

  35. 35.

    K. Schwerdtfeger, W. Fix and H. G. Schubert: Ironmak. Steelmak., 1978, vol. 5, pp. 67-71.

    CAS  Google Scholar 

  36. 36.

    A.A. Kadik, N.A. Kurovskaya, Y.A. Ignatev, N.N. Kononkova, V.V. Koltashev, and V.G. Plotnichenko: Geochem. Int., 2011, vol. 49, pp. 429-438.

    Article  CAS  Google Scholar 

  37. 37.

    G. Libourel, B. Marty and F. Humbert: Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 4123-4135.

    Article  CAS  Google Scholar 

  38. 38.

    H. O. Mulfinger: J. Am. Ceram. Soc., 1966, vol. 49, pp. 462-467.

    Article  CAS  Google Scholar 

  39. 39.

    T. Wakasugi, F. Tsukihashi and N. Sano: J. Am. Ceram. Soc., 1991, vol. 74, pp. 1650-1653.

    Article  CAS  Google Scholar 

  40. 40.

    A. Miyazaki, H. Hiyagon, and N. Sugiura: in AIP Conference Proceedings 341, America Institute of Physics press, New York, 1995, pp. 276–83.

  41. 41.

    E. Martinez and N. Sano: Steel Res. Int., 1987, vol. 58, pp. 485-490.

    Article  CAS  Google Scholar 

  42. 42.

    M. Hugo, B. Dussoubs, A. Jardy, J. Escaffre and H. Poisson: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2607-2622.

    Article  CAS  Google Scholar 

  43. 43.

    E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, H. Holzgruber, B. Ofner, and M. Ramprecht: in Proceedings of the 2013 International Symposium on Liquid Metal Processing & Casting, Austin, USA, 22–25 September 2013, pp. 13–19.

  44. 44.

    M. Choudhary and J. Szekely: Metall. Trans. B, 1980, vol. 11, pp. 439-453.

    Article  Google Scholar 

  45. 45.

    J. Yanke, K. Fezi, R. W. Trice and M. Krane: Numer. Heat Transf. A: Appl., 2015, vol .67, pp. 268-292.

    Article  Google Scholar 

  46. 46.

    K.M. Kelkar, S.V. Patankar, and A. Mitchell: in Proceeding of International Symposium on Liquid metal Processing and Casting, Santa Fe, USA, 18–21 September 2005, pp. 137–44.

  47. 47.

    Q. Wang, Z. He, B. Li, F. Tsukihashi: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2425-2441.

    Article  CAS  Google Scholar 

  48. 48.

    T. Wen, H. Zhang, X. Li, L. Yu, Y. Ren, H. Liu and L. Zhang: JOM, 2018, vol. 70, pp. 2157-2168.

    Article  CAS  Google Scholar 

  49. 49.

    A. Kharicha, M. Wu, and A. Ludwig: in Proceeding of the 2013 International Symposium on Liquid Metal Processing & Casting, Austin, USA, 22–25 September 2013, pp. 145–50.

  50. 50.

    H. Ono-Nakazato, T. Usui and S. Morisawa: Metall. Mater. Trans. B, 2002, vol. 33, pp. 393-401.

    Article  CAS  Google Scholar 

  51. 51.

    F. Tsukihashi, E. Oktay and R. J. Fruehan: Metall. Trans. B, 1986, vol. 17, pp. 541-545.

    Article  CAS  Google Scholar 

  52. 52.

    Q. Cao, L. Nastac, A. Pitts-Baggett and Q. Yu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 988-1002.

    Article  CAS  Google Scholar 

  53. 53.

    W. Lou and M. Zhu: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1706-1722.

    Article  CAS  Google Scholar 

  54. 54.

    S. Yu, J. Miettinen and S. Louhenkilpi: Steel Res. Int., 2014, vol. 85, pp. 1393-1402.

    Article  CAS  Google Scholar 

  55. 55.

    H. Gaye, D. Huin and P. V. Riboud: Metall. Mater. Trans. B, 2000, vol. 31, pp. 905-912.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Nature Science Foundations of China (Grant Nos. 51434004, U1435205, 51774074, and 51674070), the Fundamental Research Funds for the Central Universities (Grant No. N162504006), and the Transformation Project of Major Scientific and Technological Achievements in Shenyang (Grant No. Z17-5-003).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huabing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 9, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Liu, F., Li, H. et al. Numerical Simulation and Experimental Investigation of Nitrogen Transfer Mechanism from Gas to Liquid Steel During Pressurized Electroslag Remelting Process. Metall Mater Trans B 50, 3112–3124 (2019). https://doi.org/10.1007/s11663-019-01714-w

Download citation