Skip to main content
Log in

Structural and Mechanical Behavior of Al-4.4Cu/2TiB2In-Situ Nanocomposites Fabricated by Post-In-Situ Reaction Ultrasonic Processing

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Al-4.4Cu/TiB2 composites were fabricated with and without post-in-situ reaction ultrasonic melt treatment. The structural and mechanical behaviors of the composites in both the as-cast (F) and T6—peak-aged conditions were analyzed and compared with the base alloy Al-4.4Cu. The microstructural result reveals that the ultrasonic-assisted processing enhanced the dispersion of nano-sized TiB2 particles. The ultrasonic treatment-assisted fabrication has improved the yield strength of Al-4.4Cu/2TiB2 composite about ~ 2 times over the monolithic Al-4.4Cu alloy in both the as-cast and peak-aged condition while retaining > 90 pct ductility of the matrix alloy. The various strengthening mechanisms operating in the materials, namely, base alloy, micro- and nanocomposite were discussed and the theoretical yield strength was estimated using appropriate equations. The theoretical yield strength estimates were found to correlate well with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.R. Ravi, J. Nampoothiri, and B. Raj: in Nanotechnology for Energy Sustainability, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, Germany, 2017, pp. 831–56.

    Google Scholar 

  2. C. Borgonovo, D. Apelian, and M.M. Makhlouf: JOM, 2011, vol. 63, pp. 57–64.

    CAS  Google Scholar 

  3. Y. Yang, J. Lan, and X. Li: 2004, vol. 380, pp. 378–83.

    Google Scholar 

  4. R. Casati and M. Vedani: Metals, 2014, vol. 4, pp. 65–83.

    Google Scholar 

  5. P. Henrique, C. Camargo, K.G. Satyanarayana, and F. Wypych: Mater. Res., 2009, vol. 12, pp. 1–39.

    Google Scholar 

  6. K.B. Nie, X.J. Wang, K. Wu, X.S. Hu, and M.Y. Zheng: Mater. Sci. Eng. A, 2012, vol. 540, pp. 123–29.

    CAS  Google Scholar 

  7. O. Kudryashova and S. Vorozhtsov: JOM, 2016, vol. 68, pp. 1307–11.

    CAS  Google Scholar 

  8. P. Padhi, B.N. Dash, and S.K. Kar: J. Nanotechnol., 2011, vol. 2011, pp. 1–4.

    Google Scholar 

  9. D. Yuan, X. Yang, S. Wu, S. Lü, and K. Hu: J. Mater. Process. Tech., 2019, vol. 269, pp. 1–9.

    CAS  Google Scholar 

  10. M. Estruga, L. Chen, H. Choi, X. Li, and S. Jin: ACS Appl. Mater. Interfaces, 2013, 5: 8813–8819.

    CAS  Google Scholar 

  11. R. Raghu, J. Nampoothiri, and T.S. Kumar: Measurement, 2018, vol. 129, pp. 389–94.

    Google Scholar 

  12. S.L. Pramod, S.R. Bakshi, and B.S. Murty: J. Mater. Eng. Perform., (2015) 24: 2185–2207. Doi:10.1007/s11665-015-1424-2.

    Article  CAS  Google Scholar 

  13. S. Lakshmi, L. Lu, and M. Gupta: J. Mater. Process. Technol., 1998, vol. 73, pp. 160–6.

    Google Scholar 

  14. S. Bhogi, J. Nampoothiri, K.R. Ravi, and M. Mukherjee: Mater. Sci. Eng. A, 2017, vol. 685, pp. 131–8.

    CAS  Google Scholar 

  15. J. Nampoothiri, B. Raj, and K.R. Ravi: Trans. Indian Inst. Met., 2015. https://doi.org/10.1007/s12666-015-0653-2.

    Article  Google Scholar 

  16. J. Nampoothiri, R.S. Harini, S.K. Nayak, B. Raj, and K.R. Ravi: J. Alloys Compd., 2016, vol. 683, pp. 370–8.

    CAS  Google Scholar 

  17. S. Mula, P. Padhi, S.C. Panigrahi, S.K. Pabi, and S. Ghosh: Mater. Res. Bull., 2009, vol. 44, pp. 1154–60.

    CAS  Google Scholar 

  18. D.H. Nam, Y.K. Kim, S.I. Cha, and S.H. Hong: Carbon N. Y., 2012, vol. 50, pp. 4809–14.

    CAS  Google Scholar 

  19. J.R.G. Sander, B.W. Zeiger, and K.S. Suslick: Ultrason. - Sonochemistry, 2014, vol. 21, pp. 1908–15.

    CAS  Google Scholar 

  20. J.H. Bang and K.S. Suslick: Adv. Mater., 2010, vol. 22, pp. 1039–59.

    CAS  Google Scholar 

  21. K.S. Suslick, Y. Didenko, M. Fang, T. Hyeon, K. Kolbeck, W.B. McNamara, M.M. Mdleleni, M. Wong: Philos. Trans. R. Soc., 1999, vol. 357, pp. 335–53.

    CAS  Google Scholar 

  22. M.X. Zhang, P.M. Kelly, M.A. Easton, and J.A. Taylor: Acta Mater., 2005, vol. 53, pp. 1427–38.

    CAS  Google Scholar 

  23. J. Nampoothiri, B. Raj, and K.R. Ravi: Trans. Indian Inst. Met., 2015, vol. 68, pp. 1101–6.

    CAS  Google Scholar 

  24. T.V. Atamanenko, D.G. Eskin, L. Zhang, L. Katgerman: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2056–66.

    CAS  Google Scholar 

  25. A.L. Greer, A.M. Bunn, A. Tronche, P. V Evans, and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–35.

    CAS  Google Scholar 

  26. R. Thavamani, V. Balusamy, J. Nampoothiri, R. Subramanian, and K.R. Ravi: J. Alloys Compd., 2018, vol. 740, pp. 870–8.

    CAS  Google Scholar 

  27. J.Q. Xu, L.Y. Chen, H. Choi, and X.C. Li: J. Phys. Condens. Matter, 2012, vol. 24, p. 255304.

    CAS  Google Scholar 

  28. M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, and H. Wang: Mater. Sci. Eng. A, 2014, vol. 590, pp. 246–54.

    CAS  Google Scholar 

  29. Z. Száraz, Z. Trojanová, M. Cabbibo, and E. Evangelista: Mater. Sci. Eng. A, 2007, vol. 462, pp. 225–9.

    Google Scholar 

  30. T. Shanmugasundaram, B.S. Murty, and V. Subramanya Sarma: Scr. Mater., 2006, vol. 54, pp. 2013–7.

    CAS  Google Scholar 

  31. V. Udhayabanu, K.R. Ravi, and B.S. Murty: Mater. Sci. Eng. A, 2013, vol. 585, pp. 379–86.

    CAS  Google Scholar 

  32. V. Udhayabanu, K.R. Ravi, K. Murugan, D. Sivaprahasam, B.S. Murty: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2085–93.

    Google Scholar 

  33. R.J. Arsenault and N. Shi: Mater. Sci. Eng., 1986, vol. 81, pp. 175–87.

    CAS  Google Scholar 

  34. S. Scudino, G. Liu, K.G. Prashanth, B. Bartusch, K.B. Surreddi, B.S. Murty, and J. Eckert: Acta Mater., 2009, vol. 57, pp. 2029–39.

    CAS  Google Scholar 

  35. D. Poirier, R.A.L. Drew, M.L. Trudeau, and R. Gauvin: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7605–14.

    Google Scholar 

  36. H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and E.J. Lavernia: Acta Mater., 2013, vol. 61, pp. 2769–82.

    CAS  Google Scholar 

  37. S. HU, M. BASKES, M. STAN, and L. CHEN: Acta Mater., 2006, vol. 54, pp. 4699–707.

    CAS  Google Scholar 

  38. M.E. Krug, Z. Mao, D.N. Seidman, and D.C. Dunand: Acta Mater., 2014, vol. 79, pp. 382–95.

    CAS  Google Scholar 

  39. Y.C. Waung, D.E. Beskos, and W. Sachse: J. Mater. Sci., 1975, vol. 10, pp. 109–12.

    CAS  Google Scholar 

  40. C. Booth-Morrison, D.C. Dunand, and D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 7029–42.

    CAS  Google Scholar 

  41. H.I. Aaronson, J.B. Clark, and C. Laird: Met. Sci. J., 1968, vol. 2, pp. 155–8.

    CAS  Google Scholar 

  42. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu: Acta Mater., 2016, vol. 102, pp. 187–96.

    CAS  Google Scholar 

  43. D.N. Seidman, E.A. Marquis, and D.C. Dunand: Acta Mater., 2002, vol. 50, pp. 4021–35.

    CAS  Google Scholar 

  44. C.B. Fuller, D.N. Seidman, and D.C. Dunand: Acta Mater., 2003, vol. 51, pp. 4803–14.

    CAS  Google Scholar 

  45. M. Tabandeh-Khorshid, J.B. Ferguson, B.F. Schultz, C. Kim, K. Cho, and P.K. Rohatgi: Mater. Des., 2016, vol. 92, pp. 79–87.

    CAS  Google Scholar 

Download references

Funding

This research work is supported by the Directorate of Naval Research Board, Govt. of India (Grant No: DNRD/05/4003/NRB/292) and CSIR-India (Award No: 08/473(0006)/2015 EMR-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Ravi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 4, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nampoothiri, J., Balasundar, I., Raghu, T. et al. Structural and Mechanical Behavior of Al-4.4Cu/2TiB2In-Situ Nanocomposites Fabricated by Post-In-Situ Reaction Ultrasonic Processing. Metall Mater Trans B 51, 149–160 (2020). https://doi.org/10.1007/s11663-019-01713-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01713-x

Navigation