Optimizing Wear Resistance via Brazing Temperature Adaption: Application into CBN/Cu-Sn-Ti Composites


Cubic boron nitride (CBN)/Cu-Sn-Ti composites as potential superabrasive products are prepared. It is found that as the temperature increases, porosity keeps decreasing from 1123 K to 1223 K but becomes virtually constant afterward, which is inversely coupled to the reaction layer thickness variation. Weight loss arrives at the minimum value at 1223 K. Deep etching over the interfacial region reveals that TiN and TiB2 compounds have been generated, and their roles in determining wear properties are postulated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    [1] M.W. Cook and P.K. Bossom, Int. J. Refract. Met. Hard Mater., 2000, vol. 18, pp. 147-152.

    CAS  Article  Google Scholar 

  2. 2.

    [2] T. Ohashi, K. Yamamoto, Y. Hamada and T. Tanase, Int. J. Refract. Met. Hard Mater., 1998, vol. 16, pp. 403–407.

    CAS  Article  Google Scholar 

  3. 3.

    [3] L. Zhu, Z. Yang and Z. Li, Int. J. Adv. Manuf. Tech., 2019, vol. 100, pp. 2537-2555.

    Article  Google Scholar 

  4. 4.

    [4] Y. Sahin and A.R. Motorcu, Int. J. Refract. Met. Hard Mater., 2008, vol. 26, pp. 84-90.

    CAS  Article  Google Scholar 

  5. 5.

    G. Zhang, Y. Liu, Y. Wang, F. Guo, X. Liu, and Y. Wang: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1346–52.

    Article  Google Scholar 

  6. 6.

    [6] E. Benko, A. Wyczesany and T.L. Barr, Ceram. Int., 2000, vol. 26, pp. 639-644.

    CAS  Article  Google Scholar 

  7. 7.

    [7] J.M. Fernandez, R. Asthana, M. Singh and F.M. Valera, Ceram. Int., 2016, vol. 42, pp. 5447-5454.

    CAS  Article  Google Scholar 

  8. 8.

    Ghosh A, Chattopadhyay AK (2017) Int J Refract Met Hard Mater 68:96–103

    CAS  Article  Google Scholar 

  9. 9.

    [9] J. Zhang, J.Y. Liu and T.P. Wang, J. Mater. Sci. Technol., 2017, vol. 34, pp. 139-145.

    Google Scholar 

  10. 10.

    [10] C.Y. Ma, W.F. Ding, J.H. Xu and Y.C. Fu, Mater. Des., 2015, vol. 65, pp. 50-56.

    CAS  Article  Google Scholar 

  11. 11.

    [11] J. Angseryd, M. Elfwing, E. Olsson and H.O. Andrén, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 249-255.

    CAS  Article  Google Scholar 

  12. 12.

    [12] J.G. Yang and H.Y. Fang, J. Mater. Sci. Technol., 2002, vol. 18, pp. 289-290.

    CAS  Article  Google Scholar 

  13. 13.

    [13] F. Kohler, T. Campanella, S. Nakanishi and M. Rappaz, Acta Mater., 2008, vol. 56, pp. 1519-1528.

    CAS  Article  Google Scholar 

  14. 14.

    [14] S. Scudino, C. Unterdörfer, K.G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel and J. Eckert, Mater. Lett., 2015, vol. 156, pp. 202-204.

    CAS  Article  Google Scholar 

  15. 15.

    [15] W.F. Ding, Y.J. Zhu, J.H. Xu and H.H. Su, Adv. Mech. Eng., 2014, vol. 6, pp. 1-6.

    Google Scholar 

  16. 16.

    [16] R. Yazdi and S.F. Kashani-Bozorg, Mater. Chem. Phys., 2015, vol. 152, pp. 147-157.

    CAS  Article  Google Scholar 

  17. 17.

    [17] S. Liu, B. Xiao, H. Xiao, L. Meng, Z. Zhang and H. Wu, Surf. Coat. Technol., 2016, vol. 286, pp. 376-382.

    CAS  Article  Google Scholar 

  18. 18.

    [18] Q.L. Li, H.Z. Ren, W.N. Lei, K. Ding, L. Ding and S.R. Zhang, Int. J. Adv. Manuf. Tech., 2017, vol. 95, pp. 2111-2118.

    Article  Google Scholar 

  19. 19.

    [19] W.F. Ding, J.H. Xu, Z.Z. Chen, Q. Miao and C.Y. Yang, Mater. Sci. Eng. A., 2013, vol. 559, pp. 629–634.

    CAS  Article  Google Scholar 

  20. 20.

    [20] Y. Fan, J. Fan and C. Wang, Metall. Mater. Trans. B., 2019, vol. 50, pp. 601-606.

    Article  Google Scholar 

  21. 21.

    [21] Y.V. Naidich, V.S. Zhuravlev, I.I. Gab, B.D. Kostyuk, V.P. Krasovskyy, A.A. Adamovskyy and N.Y. Taranets, J. Eur. Ceram. Soc., 2008, vol. 28, pp. 717-728.

    CAS  Article  Google Scholar 

  22. 22.

    [22] Y.C. Hsieh and S.T. Lin, J. Alloys Compd., 2008, vol. 466, pp. 126-132.

    CAS  Article  Google Scholar 

  23. 23.

    [23] D.C. Jana, P. Barick and B.P. Saha, J. Mater. Eng. Perform., 2018, vol. 27, pp. 2960-2966.

    CAS  Article  Google Scholar 

  24. 24.

    [24] J. Wang, C. Liu, C. Leinenbach and U.E. Klotz, Calphad., 2011, vol. 35, pp. 82-94.

    Article  Google Scholar 

  25. 25.

    [25] S. Hamar-Thibault and C.H. Allibert, J. Alloys Compd., 2001, vol. 317, pp. 363-366.

    Article  Google Scholar 

  26. 26.

    [26] Z.W. Yang, C.L. Wang, Y. Wang, L.X. Zhang, D.P. Wang and J.C. Feng, J. Mater. Sci. Technol., 2017, vol. 33, pp. 1392-1401.

    Article  Google Scholar 

  27. 27.

    [27] Q. Miao, W. Ding, Y. Zhu, Z. Chen, J. Xu and C. Yang, Ceram. Int., 2016, vol. 42, pp. 13723-13737.

    CAS  Article  Google Scholar 

  28. 28.

    [28] M.A. Umer, P.H. Sub, J.L. Dong, H.J. Ryu and S.H. Hong, Mater. Sci. Eng. A., 2012, vol. 552, pp. 151-156.

    Article  Google Scholar 

  29. 29.

    [29] Y. Wang, X.M. Qiu, D.Q. Sun and S.Q. Yin, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 293-297.

    Article  Google Scholar 

  30. 30.

    [30] T. Wang, C. Zou, Z. Chen, M. Li, W. Wang, R. Li and H. Kang, Mater. Des., 2015, vol. 65, pp. 280-288.

    CAS  Article  Google Scholar 

  31. 31.

    [31] Q. Miao, W. Ding, Y. Zhu, Z. Chen and Y. Fu, Mater. Des., 2016, vol. 98, pp. 243-253.

    CAS  Article  Google Scholar 

  32. 32.

    [32] S.X. Liu, B. Xiao, Z.Y. Zhang and D.Z. Duan, Int. J. Refract. Met. Hard Mater., 2016, vol. 54, pp. 54-59.

    CAS  Article  Google Scholar 

Download references

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (51622401, 51861130361, 51861145312, and 51850410522), Newton Advanced Fellowship by the Royal Society (RP12G0414), Research Fund for Central Universities (N172502004), National Key Research and Development Program of China (2016YFB0300602), and Global Talents Recruitment Program endowed by the Chinese Government for their financial support. We also thank State Key Laboratory of Solidification Processing, Northwestern Polytechnical University (SKLSP201805).

Author information



Corresponding author

Correspondence to Cong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 24, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Fan, J. & Wang, C. Optimizing Wear Resistance via Brazing Temperature Adaption: Application into CBN/Cu-Sn-Ti Composites. Metall Mater Trans B 50, 2517–2522 (2019). https://doi.org/10.1007/s11663-019-01705-x

Download citation