The Dissolution of Fe in HCl from the Ilmenite Concentrate; Evaluating the Effect of Operating Parameters and Mutual Interactions

Abstract

Selective HCl dissolution of ilmenite components for obtaining Ti or titanium dioxide (TiO2) has been highly recognized due to its advantages, greater environmental friendliness, and simplicity, compared to H2SO4 and Cl2 methods. The effect of numerous parameters has been studied with the one-factor-at-a-time method. The present study aimed to evaluate the effect of key operation parameters, such as acid-to-solid ratio (A/S: 5 to 20 mL/g), reaction temperature (T: 70 °C to 100 °C), and acid concentration (A pct: 15 to 30 wt pct), on the dissolution of Fe in HCl solution with the minimum Ti losses to the leachate from its abundant, domestic, and low-cost mineral source (Kahnooj ilmenite concentrate) using central composite design–response surface methodology. After 90 minutes of leaching, the Ti/Fe (pct) in terms of dissolved amounts was selected as the process assessment response function. Based on the conducted experimental and statistical analysis, increasing the levels of parameters in the studied domain leads to an increase in Ti/Fe (pct), in the order of A pct > T > A/S. Two statistically significant mutual interactions between A/S-T and T-A pct, with 95 pct confidence level, were revealed for the first time in this study. The optimization strategy was set to the minimization of Ti/Fe (pct) by considering the objective of study and the selected response function. The A/S, T, and A pct were determined to be 5 mL/g, 70 °C, and 15 pct, respectively, for maximum impurity dissolution and minimum Ti loss to the leachate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    * DESIGN EXPERT* is a trademark of State-Ease Inc., Minneapolis, MN.

References

  1. 1.

    1. H. Salehi, H. Aghajani, and H. Salimkhani: Chem. Eng. Trans., 2018, vol. 66, pp. 397–402.

    Google Scholar 

  2. 2.

    2. J.A. Ober: USGS (US Geological Survey), Reston, VA, 2018.

    Google Scholar 

  3. 3.

    3. N. El-Hazek, T.A. Lasheen, R. El-Sheikh, and S.A. Zaki: Hydrometallurgy, 2007, vol. 87, pp. 45–50.

    CAS  Google Scholar 

  4. 4.

    4. U. Diebold: Surf. Sci. Rep., 2003, vol. 48, pp. 53–229.

    CAS  Google Scholar 

  5. 5.

    5. E. Quagliarini, F. Bondioli, G.B. Goffredo, A. Licciulli, and P. Munafò: J. Cult. Herit., 2012, vol. 13, pp. 204–09.

    Google Scholar 

  6. 6.

    6. J. Kasanen, M. Suvanto, and T.T. Pakkanen: J. Appl. Polym. Sci., 2009, vol. 111, pp. 2597–2606.

    CAS  Google Scholar 

  7. 7.

    7. M. Nikolova, A. Genov, S. Valkov, E. Yankov, D. Dechev, N. Ivanov, R. Bezdushnyi, and P. Petrov: J. Phys.: Conf. Ser., 2018, vol. 992, p. 012032.

    Google Scholar 

  8. 8.

    8. N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, and H.M. Cheng: Adv. Funct. Mater., 2011, vol. 21, pp. 1717–22.

    CAS  Google Scholar 

  9. 9.

    9. J. Lademann, H.J. Weigmann, C. Rickmeyer, H. Barthelmes, H. Schaefer, G. Mueller, and W. Sterry: Skin Pharmacol. Physiol., 1999, vol. 12, pp. 247–56.

    CAS  Google Scholar 

  10. 10.

    10. C. Wang, Q. Li, and R. D. Wang: Mater. Lett., 2004, vol. 58, pp. 1424–26.

    CAS  Google Scholar 

  11. 11.

    11. N.K. Renuka, A.K. Praveen, and K.K. Aravindakshan: Mater. Lett., 2013, vol. 91, pp. 118–20.

    CAS  Google Scholar 

  12. 12.

    12. T. Sreethawong, Y. Suzuki, and S. Yoshikawa: J. Solid State Chem., 2005, vol. 178, pp. 329–38.

    CAS  Google Scholar 

  13. 13.

    13. T. Sugimoto and X. Zhou: J. Coll. Interface Sci., 2002, vol. 252, pp. 347–53.

    CAS  Google Scholar 

  14. 14.

    14. E. Muniz, M. Góes, J. Silva, J.A. Varela, E. Joanni, R. Parra, and P.R. Bueno: Ceram. Int., 2011, vol. 37, pp. 1017–24.

    CAS  Google Scholar 

  15. 15.

    15. T. Peng, D. Zhao, K. Dai, W. Shi, and K. Hirao: Phys. Chem., 2005, vol. 109, pp. 4947–52.

    CAS  Google Scholar 

  16. 16.

    16. F. Wu, X. Li, Z. Wang, C. Xu, H. He, A. Qi, X. Yin, and H. Guo: Hydrometallurgy, 2013, vol. 140, pp. 82–88.

    CAS  Google Scholar 

  17. 17.

    17. T. Tao, Q.-Y. Chen, H.-P. Hu, Z.-L. Yin, and Y. Chen: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 1232–38.

    CAS  Google Scholar 

  18. 18.

    18. A.R. Gharakhlou and M.N. Sarvi: Mater. Res. Express, 2017, vol. 4, p. 025027.

    Google Scholar 

  19. 19.

    19. D. Aphairaj, T. Wirunmongkol, S. Pavasupree, and P. Limsuwan: Energy Procedia, 2011, vol. 9, pp. 539–44.

    CAS  Google Scholar 

  20. 20.

    T.H. Nguyen and M.S. Lee: Miner. Process. Extract. Metall. Rev., 2018, pp. 1–17.

  21. 21.

    21. M.J. Gázquez, J.P. Bolívar, R. García-Tenorio, and F. Vaca: J. Hazard. Mater., 2009, vol. 166, pp. 1429–40.

    Google Scholar 

  22. 22.

    22. X. Wang, C. Li, H. Yue, S. Yuan, C. Liu, S. Tang, and B. Liang: Chin. J. Chem. Eng., 2019, vol. 27, pp. 575–86.

    Google Scholar 

  23. 23.

    F. Habashi, F. Kamaleddine, and E. Bourricaudy: Conf. Metall. Proc. COM 2014, Montreal, PQ, Canada, 2014.

  24. 24.

    24. C. Li, B. Liang, H. Song, J.-Q. Xu, and X.-Q. Wang: Micropor. Mesopor. Mater., 2008, vol. 115, pp. 293–300.

    CAS  Google Scholar 

  25. 25.

    25. X. Xiong, Z. Wang, F. Wu, X. Li, and H. Guo: Adv. Powder Technol., 2013, vol. 24, pp. 60–67.

    Google Scholar 

  26. 26.

    26. C. Li, B. Liang, L.H. Guo, and Z.B. Wu: Miner. Eng., 2006, vol. 19, pp. 1430–38.

    CAS  Google Scholar 

  27. 27.

    S. Wahyuningsih, A. Ramelan, E. Pramono, P. Argawan, A. Djatisulistya, F. Firdiyono, E. Sulistiyono, and P. Sari: IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 333, p. 012049.

    Google Scholar 

  28. 28.

    28. J.H. Braun, A. Baidins, and R.E. Marganski: Progr. Organ. Coat., 1992, vol. 20, pp. 105–38.

    CAS  Google Scholar 

  29. 29.

    29. H. Bordbar, A.A. Yousefi, and H. Abedini: Polyol. J., 2017, vol. 4, pp. 149–73.

    CAS  Google Scholar 

  30. 30.

    30. S. Middlemas, Z.Z. Fang, and P. Fan: Hydrometallurgy, 2013, vol. 131, pp. 107–13.

    Google Scholar 

  31. 31.

    31. W. Zhang, Z. Zhu, and C.Y. Cheng: Hydrometallurgy, 2011, vol. 108, pp. 177–88.

    CAS  Google Scholar 

  32. 32.

    W.P. Duyvesteyn, B.J. Sabacky, D.E.V. Verhulst, P.G. West-Sells, T.M. Spitler, A. Vince, J.R. Burkholder, and B.J.P.M. Huls: U.S. Patent 6375923B1, Washington, DC.

  33. 33.

    G. McNulty: NORM V Int. Conf., Seville, Spain, IAEA, Wien, Austria, pp. 169–89.

  34. 34.

    M.J. Gázquez, J.P. Bolívar, R. Garcia-Tenorio, and F. Vaca: Mater. Sci. Appl., 2014, vol. 2014.

  35. 35.

    T. Hiraki, Y. Maruyama, Y. Suzuki, S. Itoh, and T. Nagasaka: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 729–36.

  36. 36.

    36. C. McKinley and A. Ghahreman: Miner. Process. Extract. Metall., 2018, vol. 127, pp. 157–68.

    CAS  Google Scholar 

  37. 37.

    37. B. Liang, C. Li, C. Zhang, and Y. Zhang: Hydrometallurgy, 2005, vol. 76, pp. 173–79.

    CAS  Google Scholar 

  38. 38.

    S.A. Berkovich: U.S. Patent 3903239A.

  39. 39.

    39. M. Imahashi and N. Takamatsu: Bull. Chem. Soc. Jpn., 1976, vol. 49, pp. 1549–53.

    CAS  Google Scholar 

  40. 40.

    40. E. Olanipekun: Hydrometallurgy, 1999, vol. 53, pp. 1–10.

    CAS  Google Scholar 

  41. 41.

    41. L. Wei, H. Hu, Q. Chen, and J. Tan: Hydrometallurgy, 2009, vol. 99, pp. 39–44.

    CAS  Google Scholar 

  42. 42.

    42. C. Sasikumar, D.S. Rao, S. Srikanth, N.K. Mukhopadhyay, and S.P. Mehrotra: Hydrometallurgy, 2007, vol. 88, pp. 154–69.

    CAS  Google Scholar 

  43. 43.

    43. R. Vásquez and A. Molina: Miner. Eng., 2012, vol. 39, pp. 99–105.

    Google Scholar 

  44. 44.

    44. N. Jabit and G. Senanayake: J. Phys.: Conf. Ser., 2018, vol. 1082, p. 012089.

    Google Scholar 

  45. 45.

    45. F. Wu, X. Li, Z. Wang, L. Wu, H. Guo, X. Xiong, X. Zhang, and X. Wang: Int. J. Miner. Process., 2011, vol. 98, pp. 106–12.

    CAS  Google Scholar 

  46. 46.

    46. J.P. van Dyk, N.M. Vegter, and P.C. Pistorius: Hydrometallurgy, 2002, vol. 65, pp. 31–36.

    Google Scholar 

  47. 47.

    47. D. Chateigner: Combined Analysis, John Wiley & Sons, New York, NY, 2013, pp. 41–90.

    Google Scholar 

  48. 48.

    48. E. Azimi, S. Karimipour, Z. Xu, J. Szymanski, and R. Gupta: Int. J. Coal Prepar. Utiliz., 2017, vol. 37, pp. 12–32.

    CAS  Google Scholar 

  49. 49.

    49. B.N. Akhgar, M. Pazouki, M. Ranjbar, A. Hosseinnia, and R. Salarian: Chem. Eng. Res. Des., 2012, vol. 90, pp. 220–28.

    CAS  Google Scholar 

  50. 50.

    50. N. Aslan: Powder Technol., 2008, vol. 185, pp. 80–86.

    CAS  Google Scholar 

  51. 51.

    51. D.C. Montgomery: Design and Analysis of Experiments, John Wiley & Sons, Hoboken, NJ, 2017, pp. 328–404.

    Google Scholar 

  52. 52.

    52. E. Azimi, S. Karimipour, M. Rahman, J. Szymanski, and R. Gupta: Energy Fuels, 2013, vol. 27, pp. 5595–5606.

    CAS  Google Scholar 

  53. 53.

    53. S. Karimipour, R. Gerspacher, R. Gupta, and R. J. Spiteri: Fuel, 2013, vol. 103, pp. 308–20.

    CAS  Google Scholar 

  54. 54.

    54. Z.R. Lazic: Design of Experiments in Chemical Engineering: a Practical Guide, John Wiley & Sons, New York, NY, 2006, pp. 262–367.

    Google Scholar 

  55. 55.

    55. B. Oraon, G. Majumdar, and B. Ghosh: Mater. Design, 2006, vol. 27, pp. 1035–45.

    CAS  Google Scholar 

  56. 56.

    56. N. Aslan: Powder Technology, 2007, vol. 174, pp. 127–33.

    CAS  Google Scholar 

  57. 57.

    Stat-Ease version 7.0.0, Stat-Ease, Inc., Minneapolis, MN.

  58. 58.

    R. Sen: Int. Res. Process. Environ. Clean Technol., 1997, vol. 68, pp. 263–70.

    CAS  Google Scholar 

  59. 59.

    59. R.G. Haverkamp, D. Kruger, and R. Rajashekar: Hydrometallurgy, 2016, vol. 163, pp. 198–203.

    CAS  Google Scholar 

  60. 60.

    60. C. Li, B. Liang, and H. Wang: Hydrometallurgy, 2008, vol. 91, pp. 121–29.

    CAS  Google Scholar 

  61. 61.

    61. T. Lasheen: Hydrometallurgy, 2005, vol. 76, pp. 123–29.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge access to infrastructure from the Mining Engineering Department, Isfahan University of Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Azimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 22, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lavasani, S.H., Azimi, E. & Sarvi, M.N. The Dissolution of Fe in HCl from the Ilmenite Concentrate; Evaluating the Effect of Operating Parameters and Mutual Interactions. Metall Mater Trans B 50, 2586–2595 (2019). https://doi.org/10.1007/s11663-019-01704-y

Download citation