Effect of Zr Microalloying on Austenite Grain Size of Low-Carbon Steels


The effect of microalloying addition of Zr on the characteristics of inclusions and prior austenite grain sizes following a quench heat treatment has been investigated for two custom-made steels. The average size of particles in the Zr-containing steel is found to be the same as the Zr-free steel (0.49 μm). However, the number of smaller particles in the Zr-containing steel is much higher than the Zr-free steel. The inclusions in the Zr-containing steel are composed of ZrO2-TiN-MnS, and inclusions in the Zr-free steel are consisted of TiOx-Ti(C,N). The average prior austenite grain size of the Zr-containing steel is consistently smaller than that of the Zr-free steel, due to a large number of fine oxide inclusions and Ti(C,N) precipitates, working to pin the austenite grain boundaries at temperatures up to 1673 K (1400 °C). The grain refinement mechanisms by inclusions through the addition of Zr are discussed via thermodynamic and kinetic calculations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. A1


  1. 1.

    X. Zhang, L. Fan, Y. Xu, Mater. Design, 2015, 65, 682-689.

    CAS  Article  Google Scholar 

  2. 2.

    W. Wu, P. Jönsson, K. Nakajima, High Temp Mater Proc, 2017, 36, 309-325.

    Google Scholar 

  3. 3.

    J. Kobayashi, D. Ina, A. Futamura, ISIJ Int. 2014, 54, 955-962.

    CAS  Article  Google Scholar 

  4. 4.

    C. J. Martis, S. K. Putatunda, J. Boileau, Mater. Design, 2013, 46, 168-174.

    CAS  Article  Google Scholar 

  5. 5.

    M. H. Lee, R. Kim, J. H. Park, Scientific Reports. 2019, 9, 1-11.

    Article  Google Scholar 

  6. 6.

    S. F. Medina, M. Chapa, P. Valles, A. Quispe, M. I. Vega, ISIJ Int, 1999, 39, 930-936.

    CAS  Article  Google Scholar 

  7. 7.

    Q. Sha and Z. Sun, Mater. Sci. Eng A, 2009, 523, 77–84.

    Article  Google Scholar 

  8. 8.

    K. He, T. N. Baker, Mater. Sci. Eng A, 1998, 256, 111-119.

    Article  Google Scholar 

  9. 9.

    X. Li, T. Zhang, Y. Min, C. Liu, M. Jiang, Ironmaking & Steelmaking, 2019, 46, 292-300.

    CAS  Article  Google Scholar 

  10. 10.

    M. Shi, P. Zhang, F. Zhu, ISIJ Int, 2014, 54, 188-192.

    CAS  Article  Google Scholar 

  11. 11.

    L. Yu, G. Li, X. Wan, X. Zhang, Y. Shen, K. Wu, Ironmaking & Steelmaking, 2019, 46, 113-123.

    Article  Google Scholar 

  12. 12.

    M. Shi, P. Zhang, C. Wang, ISIJ Int, 2014, 54, 932-937.

    CAS  Article  Google Scholar 

  13. 13.

    F. Chai, C. F. Yang, H. Su, Y. Q. Zhang, Z. Xu, J. Iron. Steel. Res. Int. 2009, 16, 69–74.

    CAS  Article  Google Scholar 

  14. 14.

    K. Sakata, H. Suito, Metallurgical & Materials Transactions B, 1999, 30(6), 1053-1063.

    Article  Google Scholar 

  15. 15.

    P. A. Manohar, M. Ferry, T. Chandra, ISIJ Int, 1998, 38, 913-924.

    CAS  Article  Google Scholar 

  16. 16.

    K. Nakajima, H. Hasegawa, S. Khumkoa, Metallurgical & Materials Transactions B, 2003, 34(5), 539-547.

    Article  Google Scholar 

  17. 17.

    D.T. Livey, P. Murray, Journal of the American Ceramic Society, 1956, 39(11), 363-372.

    Article  Google Scholar 

  18. 18.

    D.P. Song, M.J. Chen, Y.C. Liang, Modelling and Simulation in Materials Science and Engineering, 2010, 18, 1-12.

    CAS  Google Scholar 

  19. 19.

    A.V. Karasev, H. Suito, ISIJ Int, 2008, 48, 1507-1516.

    CAS  Article  Google Scholar 

  20. 20.

    J. X. Chen, Handbook of Charts and Data for Steelmaking, Beijing, Metallurgical Industry, 1984, 662.

    Google Scholar 

Download references


Minghao Shi gratefully acknowledges the financial support from China Scholarship Council.

Author information



Corresponding author

Correspondence to Leijun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 3, 2019.



Calculation of Interfacial Energy

The interfacial energy between particle and steel liquid is estimated from the relationship: \( \gamma_{\text{pl}} = \gamma_{\text{p}} + \gamma_{\text{l}} \cos \theta_{\text{pl}} \),[16] where \( \gamma_{\text{pl}} \)is the interfacial energy between particle and steel liquid; \( \gamma_{\text{l}} \)is the surface energy for steel liquid, 1910 mJ m−2[16]; \( \gamma_{{{\text{p(ZrO}}_{ 2} )}} \)is the surface energy for ZrO2 particle, 620 mJ m−2[17]; \( \gamma_{{{\text{p(TiO}}_{ 2} )}} \)is the surface energy for TiO2 particle, 1427 mJ m−2.[18] \( \theta_{\text{pl}} \) is the contact angle between particle and steel liquid, \( \theta_{{{\text{pl(ZrO}}_{ 2} {\text{ - FeO)}}}} \)is the contact angle between ZrO2 particle and steel liquid, 122 to 123 deg[19]; \( \theta_{{{\text{pl(TiO}}_{ 2} {\text{ - FeO)}}}} \) is the contact angle between TiO2 particle and steel liquid, 72 to 84 deg.[19] Consequently, the interfacial energy between ZrO2 particle and steel liquid (\( \gamma_{{{\text{pl(ZrO}}_{ 2} )}} \)) is 1335 to 1632 mJ m−2; the interfacial energy between TiO2 particle and steel liquid (\( \gamma_{{{\text{pl(TiO}}_{ 2} )}} \)) is 1626 to 2016 mJ m−2.

In the present study, it is assumed that the interfacial energy between ZrO2, TiO2 particle and steel liquid is 1335, 1626 mJ m−2, respectively, and was used for the calculation of radius of the critical nuclei and in the LSW equation.

Inputs for Equation 2 for Calculating the Growth Rate

\( C_{\text{m}} \) is the solute concentration in the steel liquid (0.01 pct for Zr, 0.015 pct for Ti); \( V_{\text{m}} \) is the molar volume of the particle (21.69 cm3 mol−1 for ZrO2, 23.49 cm3 mol−1 for TiO2); \( D_{\text{m}} \) is the diffusivity of the solute atoms (4.1 × 10−4 m2 s−1 for Zr, 3.6 × 10−4 m2 s−1 for Ti at 1873 K (1600 °C) steel liquid)[20]; \( r_{0} \) is the critical radius of particle; t is time. The temperature used in the present calculation shown in Figure A1 is 1873 K (1600 °C).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Kannan, R., Zhang, J. et al. Effect of Zr Microalloying on Austenite Grain Size of Low-Carbon Steels. Metall Mater Trans B 50, 2574–2585 (2019). https://doi.org/10.1007/s11663-019-01701-1

Download citation