Investigation of the Effect of Foaming Agent on the Fabrication of NiTi Foams Using the Self-Propagating, High-Temperature Synthesis Process


Fabrication of NiTi intermetallic foams using the self-propagating, high-temperature synthesis (SHS) process was investigated. Weighed amounts of powders taken from an equimolar mixture of Ni and Ti powders along with 0.5, 1, and 1.5 wt pct of different foaming agents were cold pressed to form cylindrical compacts 10 mm in diameter, 20 mm in height, and 7 to 8 g in weight. A novel, induction-assisted ignition method was used for indirect heating and igniting the compressed mixtures at one end. As a result of intensive exothermic reaction between Ni and Ti and decomposition of foaming agents and liberation of gases, highly porous products were obtained. Characterization of the products was carried out using X-ray diffraction (XRD) and a scanning electron microscope equipped with an energy-dispersive spectroscope (SEM-EDS). The main phase in the products was detected to be B2(NiTi) with minor amounts of NiTi2 as the secondary phase. Other undesirable phases, such as Ni4Ti3 and Ni3Ti, were not detected. The effect of type and percentage of foaming agent on the formation and distribution of pores within the products was studied. Final products with porosities up to ~ 80 vol pct were obtained by adding foaming agent. Under the conditions of this study, CaH2 proved to be the most effective foaming agent considering its ability to generate a uniform distribution of pores, while TiH2 was not considered favorable due to its decomposition at relatively low temperatures. In general, the addition of foaming agents in amounts higher than 1wt pct is not recommended; due to the endothermic nature of thermal decomposition reactions of foaming agents, excessive use of these agents can result in suppression of the exothermic reaction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.


  1. 1.

    J. Jani, M. Leary, A. Subic, and M.A. Gibson: Mater. Des. 2014, 65, 1078–1113.

    Google Scholar 

  2. 2.

    M. Whitney, S.F. Corbin, and R.B. Gorbet: Acta Mater., 2008, vol. 56, pp. 559–70.

    CAS  Google Scholar 

  3. 3.

    Z. Abdullah, R. Razali, I. Subuki, M.A. Omar, and M.H. Ismail: Adv. Mater. Res., 2016, vol. 1133, pp. 269–74.

    Google Scholar 

  4. 4.

    D. Zhou, Y. Gao, M. Lai, H. Li, B. Yuan, and M. Zhu: J. Bionic Eng., 2015, vol. 12, pp. 575–82.

    Google Scholar 

  5. 5.

    M. Kaya and O. Cakmak: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1499–1503.

    Google Scholar 

  6. 6.

    F. Mohammadi, M. Kharaziha, and A. Ashrafi: Met. Mater. Int., 2019, vol. 25 (3), pp. 617–26.

    CAS  Google Scholar 

  7. 7.

    C. Wen, X. Yu, W. Zeng, S. Zhao, L. Wang, G. Wan, S. Huang, H. Grover, and Z. Chen: AIMS Mater. Sci., 2018, vol. 5, pp. 559–90.

    CAS  Google Scholar 

  8. 8.

    S.O.R. Sheykholeslami, J. Khalil-Allafi, and L. Fathyunes: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5878–87.

    Google Scholar 

  9. 9.

    A. Bansiddhi, T.D. Sargeant, S.I. Stupp, and D.C. Dunand: Acta Biomater., 2008, vol. 4, pp. 773–82.

    CAS  Google Scholar 

  10. 10.

    P. Salvetr, Z. Pecenova, A. Školáková, and P. Novák: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1524–27.

    Google Scholar 

  11. 11.

    M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri: Progr. Mater. Sci., 2012, vol. 57, pp. 911–46.

    CAS  Google Scholar 

  12. 12.

    B.Y. Li, L.J. Rong, Y.Y. Li, and V.E. Gjunter: Acta Mater., 2000, vol. 48, pp. 3895–3904.

    CAS  Google Scholar 

  13. 13.

    Y.H. Li, L.J. Rong, and Y.Y. Li: J. Alloys Compd., 2001, vol. 325, pp. 259–62.

    CAS  Google Scholar 

  14. 14.

    B.Y. Li, L.J. Rong, Y.Y. Li, and V.E. Gjunter: Metall. Mater. Trans. A, 2000, 31A, 1867–71.

    CAS  Google Scholar 

  15. 15.

    C.L. Yeh and W.Y. Sung: J. Alloy Compd., 2004, vol. 376, pp. 79–88.

    CAS  Google Scholar 

  16. 16.

    K. Khanlari, M. Ramezani, P. Kelly, P. Cao, and T. Neitzert: Intermetallics, 2018, vol. 100, pp. 32–43.

    CAS  Google Scholar 

  17. 17.

    H. Li, B. Yuan, Y. Gao, C.Y. Chung, and M. Zhu: J. Mater. Sci., 2009, vol. 44, pp. 875–81.

    CAS  Google Scholar 

  18. 18.

    G. Tosun, L. Ozler, M. Kaya, and N. Orhan: J. Alloys Compd., 2009, vol. 487, pp. 605–11.

    CAS  Google Scholar 

  19. 19.

    X. Ma, H. Xie, J. Qu, Q. Song, Z. Ning, H. Zhao, and H. Yin: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 940–49.

    Google Scholar 

  20. 20.

    Y. Arakawa, M. Kobashi, and N. Kanetake: Materials, 2012, vol. 5, pp. 1267–74.

    CAS  Google Scholar 

  21. 21.

    S.K. Sadrnezhaad, S.H. Katiraei, and A. Ghasemi: Int. J. Adv. Des. Manuf. Technol., 2014, vol. 7, pp. 1–7.

    Google Scholar 

  22. 22.

    P. Novák, L. Mejzlíková, A. Michalcová, J. Čapek, P. Beran, and D. Vojtěch: Intermetallics, 2013, vol. 42, pp. 85–91.

    Google Scholar 

  23. 23.

    P. Novák, T. Veselý, I. Marek, P. Dvořák, V. Vojtěch, P. Salvetr, M. Karlik, P. Haušild, and J. Kopeček: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 932–38.

    Google Scholar 

  24. 24.

    M. Kaya, N. Orhan, and G. Tosun: Curr. Opin. Solid State Mater. Sci., 2010, vol. 14, pp. 21–25.

    CAS  Google Scholar 

  25. 25.

    J.L. Xu, L.Z. Bao, A.H. Liu, X.F. Jin, J.M. Luo, Z.C. Zhong, and Y.F. Zheng: J. Alloys Compd., 2015, vol. 645, pp. 137–42.

    CAS  Google Scholar 

  26. 26.

    A. Baran and M. Polanski: J. Alloys Compd., 2018, vol. 750, pp. 863–70.

    CAS  Google Scholar 

  27. 27.

    X. Zhao, H. Sun, L. Lan, J. Huang, H. Zhang, and Y. Wang: Mater. Lett., 2009, vol. 63, pp. 2402–04.

    CAS  Google Scholar 

  28. 28.

    S.A. Hosseini, M. Alizadeh, A. Ghasemi, and M.A. Meshkot: J. Mater. Eng. Perform., 2013, vol. 22, pp. 405–09.

    CAS  Google Scholar 

  29. 29.

    G. Chen, P. Cao, and N. Edmonds: Mater. Sci. Eng. A, 2013, vol. A582, pp. 117–25.

    Google Scholar 

  30. 30.

    S. Wu, X. Liu, K.W.K. Yeung, T. Hu, Z. Xu, J.C.Y. Chung, and P.K. Chu: Acta Biomater., 2011, vol. 7, pp. 1387–97.

    CAS  Google Scholar 

  31. 31.

    Y. Arakawa, M. Kobashi, and N. Kanetake: J. Jpn. Inst. Met., 2010, vol. 75, pp. 379–85.

    Google Scholar 

  32. 32.

    C.L. Chu, C.Y. Chung, P.H. Lin, and S.D. Wang: Mater. Sci. Eng. A, 2004, vol. 366A, pp. 114–19.

    Google Scholar 

  33. 33.

    P. Salvetr, A. Školáková, C. Hudrisier, P. Novák, and D. Vojtěch: Materials, 2018, vol. 11, pp. 689–700.

    Google Scholar 

  34. 34.

    P. Rittmayer and U. Wieltelmann: Ullmann’s Encyclopedia of Industrial Chemistry, B. Elvers, ed., Wiley-VCH, Weinheim, 2012, pp. 103–32.

  35. 35.

    A.F. Holleman and E. Wiberg: Inorganic Chemistry, 1st ed., N. Wiberg, ed., Walter de Gruyter-Academic Press, Berlin, 2001, pp. 270–73.

  36. 36.

    J. Blamey, E.J. Anthony, J. Wang, and P.S. Fennell: Progr. Energy Combust. Sci., 2010, vol. 36, pp. 260–79.

    CAS  Google Scholar 

  37. 37.

    D. Yang, J. Chen, H. Wang, J. Jiang, and A. Ma: J. Mater. Sci. Technol., 2015, vol. 31, pp. 361–68.

    CAS  Google Scholar 

  38. 38.

    H.C. Yi and J.J. Moore: Scripta Metall., 1988, vol. 22, pp. 1889–92.

    CAS  Google Scholar 

  39. 39.

    M. Thier, M. Hiihner, E. Kobus, D. Drescher, and C. Bourauel: Mater. Charact., 1991, vol. 27, pp. 133–40.

    CAS  Google Scholar 

  40. 40.

    A. Foroozmehr, A. Kermanpur, F. Ashrafizadeh, and Y. Kabiri: Mater. Sci. Eng. A, 1991, vol. 528A, pp. 7952–55.

    Google Scholar 

  41. 41.

    J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, and G. Eggeler: Acta Mater., 2010, vol. 58, pp. 3444–58.

    CAS  Google Scholar 

  42. 42.

    P. Salvetr, T. Kubatik, D. Pignol, and P. Novák: Metall. Mater. Trans. B, 2017, 48B, 772–78.

    Google Scholar 

  43. 43.

    A. Školáková, P. Novák, P. Salvetr, H. Moravec, V. Šefl, D. Deduytsche, and C. Detavernier: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3559–69.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mandana Adeli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 28, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalantari, H., Adeli, M. & Aboutalebi, M.R. Investigation of the Effect of Foaming Agent on the Fabrication of NiTi Foams Using the Self-Propagating, High-Temperature Synthesis Process. Metall Mater Trans B 50, 2566–2573 (2019).

Download citation