Closure of Internal Porosity in Continuous Casting Bloom During Heavy Reduction Process


To investigate the closure behavior of internal porosity (also referred to as internal void) in continuous casting bloom during heavy reduction (HR) and thus provide theoretical guidance for minimizing this kind of internal defect more effectively with HR, a three-dimensional (3D) mechanical model was developed based on the predicted temperature field by a 2D heat transfer model. With this 3D mechanical model, closure behaviors of internal porosity in continuous casting bloom during HR at and after the strand solidification end under different process conditions were numerically studied. It was found that the void axis length decreased significantly along the bloom thickness direction and increased slightly along the casting and bloom width directions after HR, and the influence of the initial void size on the void closure was not obvious. With a decrease of temperature difference between the bloom surface and center, HR efficiency for minimizing internal void decreased, while the required reduction force significantly increased. Compared with blooms with a uniform temperature distribution of 1100 °C, the void closure index after HR implemented at the strand solidification end was increased by ~ 25 pct. Compared with a conventional flat roll, the application of a convex roll during HR could contribute to minimizing the internal porosity more effectively and significantly enhance the reduction capacity of the withdrawal and straightening units. The void closure index of ηs and ηv (where ηs and ηv were defined based on the variation of the void aspect ratio and the void volume, respectively) was closely related to the equivalent strain (εeq) and the hydrostatic integration parameter (Q), respectively, and two mathematical equations were derived to quantitatively describe the relationship of ηs − εeq and ηv − Q.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23


  1. 1.

    H. Kakimoto, T. Arikawa, Y. Takahashi, T. Tanaka and Y. Imaida: J. Mater. Process. Technol., 2010, vol. 210, pp. 415–22.

    CAS  Article  Google Scholar 

  2. 2.

    Y.S. Lee, S.U. Lee, C.J. Van Tyne and B.D. Joo: J. Mater. Process. Technol., 2011, vol. 211, pp. 1136-45.

    Article  Google Scholar 

  3. 3.

    J.J. Park: ISIJ Int., 2013, vol. 53, pp. 1420-6.

    CAS  Article  Google Scholar 

  4. 4.

    M.S. Chen and Y.C. Lin: Int. J. Plast., 2013, vol. 49, pp. 53-70.

    CAS  Article  Google Scholar 

  5. 5.

    D.C. Chen: J. Mater. Process. Technol., 2006, vol. 180, pp. 193-200.

    CAS  Article  Google Scholar 

  6. 6.

    M. Nakasaki, I. Takasu and H. Utsunomiya: J. Mater. Process. Technol., 2006, vol. 177, pp. 521-4.

    CAS  Article  Google Scholar 

  7. 7.

    J. Chen, K. Chandrashekhara, C. Mahimkar, S.N. Lekakh and V.L. Richards: J. Mater. Process. Technol., 2011, vol. 211, pp. 245-55.

    CAS  Article  Google Scholar 

  8. 8.

    G.S. Li, W. Yu and Q.W. Cai: Metall. Mater. Trans. B, 2015, vol. 46, pp. 831-40.

    Google Scholar 

  9. 9.

    G.S. Li, W. Yu and Q. Cai: J. Mater. Process. Technol., 2016, vol. 227, pp. 41-8.

    CAS  Article  Google Scholar 

  10. 10.

    J.J. Park: Metall. Mater. Trans. A, 2016, vol. 47, pp. 479-87.

    Article  Google Scholar 

  11. 11.

    X.K. Zhao, J.M. Zhang, S.W. Lei and Y.N. Wang: Steel Res. Int., 2014, vol. 85, pp. 1533-43.

    CAS  Article  Google Scholar 

  12. 12.

    Z.G. Xu, X.H. Wang and M. Jiang: Steel Res. Int., 2017, vol. 88, pp. 231-42.

    CAS  Google Scholar 

  13. 13.

    Q.P. Dong, J.M. Zhang, B. Wang and X.K. Zhao: J. Mater. Process. Technol., 2016, vol. 238, pp. 81-8.

    CAS  Article  Google Scholar 

  14. 14.

    J.P. Zhao, L. Liu, W.W. Wang and H. Lu: Ironmaking Steelmaking, 2017,

    Article  Google Scholar 

  15. 15.

    C. Ji, C.H. Wu and M.Y. Zhu: JOM, 2016, vol. 68, pp. 3107-15.

    Article  Google Scholar 

  16. 16.

    C. Ji, G.L. Li, C.H. Wu and M.Y. Zhu: Metall. Mater. Trans. B, 2019, vol. 50, pp. 110-22.

    Article  Google Scholar 

  17. 17.

    C.H. Wu, C. Ji and M.Y. Zhu: J. Mater. Process. Technol., 2019, vol. 271, pp. 651-9.

    Article  Google Scholar 

  18. 18.

    K. Miyazawa and K. Schwerdtfeger: rch. Eisenhuettenwes., 1981, vol. 52, pp. 415–22.

  19. 19.

    T. Kajitani, J.-M. Drezet, and M. Rappaz: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1479-91.

    CAS  Article  Google Scholar 

  20. 20.

    M. Wu, J. Domitner, and A. Ludwig: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 945-64.

    Article  Google Scholar 

  21. 21.

    J. Domitner, M. Wu, A. Kharicha, A. Ludwig, B. Kaufmann, J. Reiter, and T. Schaden: Metall. Mater. Trans. A, 2013, vol. 45, pp. 1415-34.

    Google Scholar 

  22. 22.

    M. Wu, and A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1613–31.

    CAS  Article  Google Scholar 

  23. 23.

    R. Guan, C. Ji, M.Y. Zhu, and S.M. Deng, Metall. Mater. Trans. B, 2018, vol. 49, pp. 2571–83.

    Article  Google Scholar 

  24. 24.

    R. Guan, C. Ji, C. H. Wu, and M. Y. Zhu, Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 503-16.

    CAS  Article  Google Scholar 

  25. 25.

    H.M. Wang, G.R. Li, Y.C. Lei, Y.T. Zhao, Q.X. Dai and J.J. Wang: ISIJ Int., 2005, vol. 45, pp. 1291-6.

    CAS  Article  Google Scholar 

  26. 26.

    C. Ji, S. Luo and M.Y. Zhu: ISIJ Int., 2014, vol. 54, pp. 504-10.

    CAS  Article  Google Scholar 

  27. 27.

    C. Ji, Z.L. Wang, C.H. Wu and M.Y. Zhu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 767-82.

    Article  Google Scholar 

  28. 28.

    C.H. Moon, K.S. Oh, J.D. Lee, S.J. Lee and Y. Lee: ISIJ Int., 2012, vol. 52, pp. 1266-72.

    CAS  Article  Google Scholar 

  29. 29.

    M. Tanaka, S. Ono and M. Tsuneno: J. Jpn. Soc. Technol. Plast., 1987, vol. 28, pp. 238–44.

    Google Scholar 

  30. 30.

    J.L. Rodgers and W.A. Nicewander: Am. Stat., 1988, vol. 42, pp. 59-66.

    Article  Google Scholar 

Download references


The present work is financially supported by the National Natural Science Foundation of China No. 51974078 and U1560208, the Fundamental Research Funds for the Central Universities of China N172504024 and N182515006. Special thanks are due to our cooperating company for industrial trials and applications.

Author information



Corresponding author

Correspondence to Cheng Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 28, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Ji, C. & Zhu, M. Closure of Internal Porosity in Continuous Casting Bloom During Heavy Reduction Process. Metall Mater Trans B 50, 2867–2883 (2019).

Download citation