Kinetic Study on Alloying Element Transfer During an Electroslag Remelting Process

Abstract

Experimental and theoretical studies have been carried out to investigate the effects of slag on the alloying elements in ingots during the electroslag remelting (ESR) process with a focus on developing a mass-transfer model to understand the mechanism of slag-metal reaction. Stainless steel 1Cr21Ni5Ti was used as the electrode and remelted with two different kinds of slags using a 50-kg ESR furnace. The contents of sulfur, aluminum, titanium and silicon along the axial direction of the produced ingots were analyzed. On the basis of the penetration and film theories, the theoretical model developed in this work elucidates the kinetics of the slag-metal reaction revealing the mechanism of alloying element transfer during the ESR process. The calculation results obtained from the model agree well with the experimental results. The model indicates that the resultant [O] coming from the desulfurization reaction of (O2−) + [S] = (S2−) + [O] causes the oxidation of alloying elements in steel by [M] + [O] = (MO). The distribution ratio of sulfur LS decreases with the increase of slag temperature in the first slag-temperature-rising period, and the concentration of sulfur in the ingot at the beginning of the ESR process is lower than in the rest of the process because of the combination of the large distribution ratio of sulfur LS and excellent kinetic conditions. The concentration of aluminum along the height of the ingot has an increasing trend in the first slag-temperature-rising period, while it has a decreasing trend in the rest of the process. Two methods can solve this problem: one is starting up the ESR furnace by high temperature molten slag technology and the other is continually adding extra titania into the molten slag in the first slag-temperature-rising period.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Metall. Mater. Trans. B, 2016, vol.47, no.2, pp.1465-1474.

    Article  Google Scholar 

  2. 2.

    M.E. Fraser, and A. Mitchell: Ironmaking Steelmaking, 1976, vol.3, no.5, pp. 279-287.

    CAS  Google Scholar 

  3. 3.

    A. Mitchell: Doctor’s Thesis, The University of British Columbia, 1974, pp. 103.

  4. 4.

    J.H. Wei, and A. Mitchell: Acta Metallurgica Sinica, 1984, vol.20, no.5, pp. 261-279.

    Google Scholar 

  5. 5.

    K. Schwerdtfeger, W. Wepner, and G. Pateisky: Ironmaking Steelmaking, 1978, vol.5, no.3, pp. 143-135.

    CAS  Google Scholar 

  6. 6.

    S.C. Duan, X. Shi, M.T. Mao, W.S. Yang, S.W. Han, H.J. Guo, and J. Guo: Scientific Reports, 2018, vol.8, no.1, pp.1-14.

    Article  Google Scholar 

  7. 7.

    Q. Wang, Z. He, B.K. Li, and F. Tsukihashi: Metall. Mater. Trans. B, 2014, vol.45, no.12, pp.2014-2425.

    Google Scholar 

  8. 8.

    D. Hou, Z.H. Jiang, Y.W. Dong, Y. Li, W. Gong, and F.B. Liu: Metall. Mater. Trans. B, 2017, vol.48, no.6, pp.1885-1895.

    Article  Google Scholar 

  9. 9.

    D. Hou, Z.H. Jiang, Y.W. Dong, W. Gong, Y.L. Cao, and H.B. Cao: ISIJ Int., 2017, vol.57, no.8, pp.1400-1419.

    CAS  Article  Google Scholar 

  10. 10.

    C.Y. Liu, M. Yagi, X. Gao, S.J. Kim, F. Huang, S. Ueda, and S.Y. Kitamura: Metall. Mater. Trans. B, 2018, vol.49, no.1, pp.113-122.

    Article  Google Scholar 

  11. 11.

    Y. Tabatabaei, K.S. Coley, G.A. Irons, and S. Sun: Metall. Mater. Trans. B, 2018, vol.49, no.1, pp.375-387.

    Article  Google Scholar 

  12. 12.

    J.H. Shin, Y. Chung, and J.H. Park: Metall. Mater. Trans. B, 2017, vol.48, no.1, pp.46-59.

    Article  Google Scholar 

  13. 13.

    Z.B. Feng, W.X. Pan, Y.W. Wang, and Z.W. Long: Powder Technology, 2018, vol.340, pp.502-510.

    CAS  Article  Google Scholar 

  14. 14.

    Z.B. Feng, W.X. Pan, H. Zhang, X.L. Cheng, Z.W. Long, and J.H. Mo: Powder Technology, 2018, vol.327, pp.201-214.

    CAS  Article  Google Scholar 

  15. 15.

    H.B. Li, S.X. Yang, S.C. Zhang, B.B. Zhang, Z.H. Jiang, H. Feng, P.D. Han, and J.Z. Li: Materials and Design, 2017, vol.118, pp.207-217.

    CAS  Article  Google Scholar 

  16. 16.

    H.B. Li, E.Z. Zhou, Y.B. Ren, D.W. Zhang, D.K. Xu, C.G. Yang, H. Feng, Z.H. Jiang, X.G. Li, T.Y. Gu, and K. Yang: Corrosion Science, 2016, vol.111, pp.811-821

    CAS  Article  Google Scholar 

  17. 17.

    H.B. Li, B.B. Zhang, Z.H. Jiang, S.C. Zhang, H. Feng, P.D. Han, N. Dong, W. Zhang, G.P. Li, G.W. Fan, and Q.Z. Lin: Journal of Alloys and Compounds, 2016, vol.686, pp.326-338.

    CAS  Article  Google Scholar 

  18. 18.

    Z.Y. Deng, and M.Y. Zhu: ISIJ Int., 2013, vol.53, no.3, pp.450-458.

    CAS  Article  Google Scholar 

  19. 19.

    G. Okuyama, K. Yamaguchi, S. Takeuchi, and K. Sorimachi: ISIJ Int., 2000, vol.40, no.2, pp. 121-128.

    CAS  Article  Google Scholar 

  20. 20.

    G. Pateisky: Journal of vacuum science & technology, 1972, vol.9, no.6, pp. 1323-1318.

    Article  Google Scholar 

  21. 21.

    Wei Jihe: Chin.J.Met.Sci.Technol., 1989, vol.5, pp. 245-235.

    Google Scholar 

  22. 22.

    D. Hou, Z.H. Jiang, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Ironmaking & Steelmaking, 2016, vol.43, no.7, pp.517-525.

    CAS  Article  Google Scholar 

  23. 23.

    D. Hou, Z.H. Jiang, T.P. Qu, D.Y. Wang, F.B. Liu, and H.B. Li (2019) J. Iron Steel Res. Int. 26(1):20–31

    Article  Google Scholar 

  24. 24.

    X.M. Yang, C.B. Shi, M. Zhang, and G.M. Chai: Metall. Mater. Trans. B, 2011, vol.42B, no.12, pp. 1150-1180.

    Article  Google Scholar 

  25. 25.

    X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2011, vol.42B, no.10, pp. 951-2011.

    Article  Google Scholar 

  26. 26.

    X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L. Zhang, and J.C. Wang: Metall. Mater. Trans. B, 2011, vol.42B, no.8, pp.738-770.

    Article  Google Scholar 

  27. 27.

    X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, and H.J. Guo: ISIJ Int., 2009, vol.49, no.12, pp. 1828-1837.

    CAS  Article  Google Scholar 

  28. 28.

    The Japan Society for the Promotion of Science: The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, NY, 1988.

  29. 29.

    A. Karasev, and H. Suito: Metall. Mater. Trans. B, 1999, vol.30, no.4, pp. 257-249.

    CAS  Article  Google Scholar 

  30. 30.

    J.H. Park, S.B. Lee, D.S. Kim, and J.J. Pak: ISIJ Int., 2009, vol.49, no.3, pp. 337-342.

    CAS  Article  Google Scholar 

  31. 31.

    S.W. Cho, and H. Sutio: ISIJ Int., 1994, vol.34, no.9, pp. 746-754.

    CAS  Article  Google Scholar 

  32. 32.

    C.J. Xiang: Chart Data Manual for Steelmaking, Metallurgical Industry Press, Beijing, 1984, pp. 662.

    Google Scholar 

  33. 33.

    R.D. Morales, H.H. Rodriguez, G.P. Garnica, and J.A. Romero: ISIJ Int., 1997, vol. 37, no. 11, pp. 1072-1080.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Nature Science Foundation of China with Grant Nos. 51674172, 51804205 and 51874203. This project is also supported by the China Postdoctoral Science Foundation with grant no. 7131704818 and Jiangsu Science and Technology Foundation with Grant No. 18KJB450002.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tian-Peng Qu or Hui-Hua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 3, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, D., Wang, DY., Qu, TP. et al. Kinetic Study on Alloying Element Transfer During an Electroslag Remelting Process. Metall Mater Trans B 50, 3088–3102 (2019). https://doi.org/10.1007/s11663-019-01690-1

Download citation