The Effect of Melt Ultrasound Treatment on the Microstructure and Age Hardenability of Al-4 Wt Pct Cu/TiC Composite


In the present work, Al-4 wt pct Cu/TiC composite was synthesized by the molten salt route that contains submicron-sized TiC particles in the Al-4 wt pct Cu matrix. The concentration of the TiC particle in the base alloy is 7.5 wt pct. Melt ultrasound treatment was done by remelting the as-cast composite at 1023 K (750 °C) in a view to refine the size of TiC particles to nanoscale and distribute them evenly in the matrix. The microstructure and age hardenability of the untreated and ultrasound-treated composites were investigated. The TiC particles accelerate the precipitation kinetics of CuAl2 phase in Al-4 wt pct Cu alloy. In the present study, the hardness obtained for untreated Al-4 wt pct Cu/TiC composite is 120 VHN within 5 hours of peak aging time, which is higher than the hardness of the monolithic Al-4 wt pct Cu, which is 104 VHN at 35 hours of peak aging time. Melt ultrasound treatment of Al-4 wt pct Cu/TiC composite shows no significant effect on the distribution and refinement of TiC particles in the matrix. However, it partially disintegrates the TiC into Al3Ti and Al4C3 particles. The ultrasound-treated composite showed an improved hardness of about 132 VHN at 5 hours of peak aging, in comparison to that of the untreated composite, by forming denser and homogeneous CuAl2 precipitates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.


  1. 1.

    S.L. Promod, S.R. Bakshi, and B.S. Murty: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2185–2207.

    Article  Google Scholar 

  2. 2.

    G.S. Pradeep Kumar, P.G. Koppad, R. Keshavamurthy, and M. Alipour: Arch. Civ. Mech. Eng., 2017, vol. 17, pp. 535–44.

  3. 3.

    R. Mitra and Y. Mahajan: Bull. Mater. Sci., 1995, vol. 18, pp. 405–34.

    CAS  Article  Google Scholar 

  4. 4.

    C. Selcuk and A.R. Kennedy: Mater. Lett., 2006, vol. 60, pp. 3364–66.

    CAS  Article  Google Scholar 

  5. 5.

    A.R. Kennedy and A.E. Karantzalis: Mater. Sci. Eng. A, 1999, vol. 264, pp. 122–29.

    Article  Google Scholar 

  6. 6.

    P. Sahoo and M.J. Koczak: Mater. Sci. Eng. A, 1999, vol. 131, pp. 69–76.

  7. 7.

    G.S. VinodKumar, B.S. Murty, and M. Chakraborty: J. Alloys Compd., 2005, vol. 396, pp. 143–50.

    Article  Google Scholar 

  8. 8.

    R. Bauri: Trans. Ind. Inst. Met., 2009, vol. 62, pp. 391–95.

    CAS  Article  Google Scholar 

  9. 9.

    Y. Birol: J. Alloys Compd., 2008, vol. 454, pp. 110–17.

    CAS  Article  Google Scholar 

  10. 10.

    A. Albiter, C.A. Leon, R.A.L. Drew, and E. Bedolla: Mater. Sci. Eng. A, 2000, vol. 289, pp. 109–15.

    Article  Google Scholar 

  11. 11.

    Mostaed, H. Saghafian, E. Mostaed, A. Shokuhfar, and H.R. Rezaie: Mater. Charact., 2013, vol. 76, pp. 76–82.

  12. 12.

    L. Wang, F. Qiu, J. Liu, H. Wang, J. Wang, L Zhu, and Q. Jiang: Mater. Des., 2015, vol. 79, pp. 68–72.

  13. 13.

    N. Nemati, R. Khosroshahi, M. Emanmy, and A. Zolriasatein: Mater. Des., 2011, vol. 31, pp. 3718–29.

    Article  Google Scholar 

  14. 14.

    A.R. Kennedy, D.P. Weston, and M.I. Jones: Mater. Sci. Eng. A, 2001, vol. 316, pp. 32–38.

  15. 15.

    X. Li, Y. Yang, and X. Cheng: J. Mater. Sci., 2004, vol. 39, pp. 3211–12.

    CAS  Article  Google Scholar 

  16. 16.

    X. Li, Y. Yang, and D. Weiss: Metall. Sci. Technol., 2008, vol. 26 (2), p. 12–22.

    Google Scholar 

  17. 17.

    Y. Yang and X. Li: Trans. ASME Ser. B, 2007, vol. 129, pp. 497–501.

    Google Scholar 

  18. 18.

    G. Cao, H. Konishi, and X. Li: Mater. Sci. Eng. A, 2008, vol. 8, pp. 58–65.

    Google Scholar 

  19. 19.

    A. Erman, J. Groza, X. Li, H. Choi, and G. Cao: Mater. Sci. Eng. A, 2012, vol. 558, pp. 39–43.

    CAS  Article  Google Scholar 

  20. 20.

    G. Cao, J. Kobliska, H. Konishi, and X. Li: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 880–86.

    CAS  Article  Google Scholar 

  21. 21.

    G. Cao, H. Choi, H. Konishi, S. Kou, R. Lakes, and X. Li: J. Mater. Sci., 2008, vol. 43, pp. 5521–26.

    CAS  Article  Google Scholar 

  22. 22.

    G. Cao, H. Konishi, and X. Li: Mater. Sci. Eng. A, 2008, vol. 486, pp. 357–62.

    Article  Google Scholar 

  23. 23.

    P. Christy-Roshini, B. Nagasivamuni, Baldev-Raj, and K.R. Ravi: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2234–39.

  24. 24.

    J. Nampoothiri, R. Sri-Harini, S.K. Nayak, B. Raj, and K.R. Ravi: J. Alloys Compd., 2016, vol. 683, pp. 370–78.

    CAS  Article  Google Scholar 

  25. 25.

    Z. Liu, Q. Han, and J. Li: Composites: Part B, 2011, vol. 42, pp. 2080–84.

    Article  Google Scholar 

  26. 26.

    H. Su, W. Gao, Z. Feng, and Z. Lu: Mater. Des., 2012, vol. 36, pp. 590–96.

    CAS  Article  Google Scholar 

  27. 27.

    G.I. Eskin: Ultrason. Sonochem., 2001, vol. 8, pp. 319–25.

    CAS  Article  Google Scholar 

  28. 28.

    X. Jian, H. Xu, T.T. Meek, and Q. Han: Mater. Lett., 2005, vol. 59, pp. 190–93.

    CAS  Article  Google Scholar 

  29. 29.

    A. Mandal, R. Maiti, M. Chakraborty, and B.S. Murty: Mater. Sci. Eng. A, 2004, vol. 386, pp. 296–300.

    Article  Google Scholar 

  30. 30.

    I. Dutta and D.L. Bourell: Acta Metall. Mater., 1990, vol. 38, pp. 2041–49.

    CAS  Article  Google Scholar 

  31. 31.

    K.S. Suslick, Y. Didenko, M.M. Fang, T. Hyeon, K.J. Kolbeck, and W.B. McNamara III: Philos. Trans. R. Soc. A, 1999, vol. 357, pp. 335–53.

    CAS  Article  Google Scholar 

  32. 32.

    Z. Liu, Q. Han, J. Li, and W. Huang: J. Mater. Process Technol., 2012, vol. 212, pp. 365–71.

    CAS  Article  Google Scholar 

  33. 33.

    V.H. Lopez, A.R. Kennedy, and J. Lemus: Kov. Mater., 2010, vol. 48, pp. 17–24.

    CAS  Google Scholar 

  34. 34.

    A. Tronche, M. Vandyoussefi, and A.L. Greer: Mater. Sci. Technol., 2002, vol. 18, pp. 1072–78.

    CAS  Article  Google Scholar 

  35. 35.

    G.S. Vinod Kumar, B.S. Murty, and M. Chakraborty: Int. J. Cast Met. Res., 2010, vol. 23, pp. 193–204.

  36. 36.

    B.C Pai, K.R. Ravi, and R.M. Pillai: Trans. Ind. Inst. Met., 2009, vol. 62, pp. 373–78.

    CAS  Article  Google Scholar 

  37. 37.

    B. Guo, B. Chen, X. Zhang, Xi.Cen, X. Wang, M. Song, N. Song, J. Yi, T. Shen, and Y. Du: Carbon, 2018, vol. 135, pp. 224–35.

    CAS  Article  Google Scholar 

  38. 38.

    K. Das and L.K. Narnaware: Mater. Sci. Eng. A, 2008, vol. 497, pp. 25–30.

    Article  Google Scholar 

  39. 39.

    J. Banhart: ASM Handbook, ASM International, Materials Park, OH, 2016, vol. 4E, pp. 214–39.

    Google Scholar 

  40. 40.

    S. Arakawa, T. Hatayama, K. Matsugi, and O. Yanagisawa: Scripta Mater., 2000, vol. 42, pp. 755–60.

    CAS  Article  Google Scholar 

  41. 41.

    S.K. Varma, J. Ponce, M. Solis, S. Andrews, and D. Salas: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2023–34.

    CAS  Article  Google Scholar 

  42. 42.

    Q. Jin, G. Chen, X. Ji, X. Song, N. Hu, F. Han, and Z. Du: J. Alloys Compd., 2016, vol. 666, pp. 58–64.

    Article  Google Scholar 

  43. 43.

    B. Zheng, T. Topping, J.E. Smugeresky, Y. Chou, A. Biswas, D. Baker, and E.J. Lavernia: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 568–73.

    CAS  Article  Google Scholar 

Download references


One of the authors (GSV) thanks the Naval Research Board, Ministry of Defence, India (Grant No. NRB-317/MAT/13-14) for supporting this work.

Author information



Corresponding author

Correspondence to G. S. Vinodkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 10, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Brass, S., Ravi, K.R., Nampoothiri, J. et al. The Effect of Melt Ultrasound Treatment on the Microstructure and Age Hardenability of Al-4 Wt Pct Cu/TiC Composite. Metall Mater Trans B 50, 2557–2565 (2019).

Download citation