Investigation on the Surface Vortex Formation During Mechanical Stirring with an Axial-Flow Impeller Used in an Aluminum Process


The present study investigated the mechanism of surface vortex formation in an aluminum melt vessel stirred by an axial-flow impeller mechanically. The oxide film is formed at the aluminum melt/air interface, and the movement of the interface entrains the oxide film and inclusions. Hence, the transient movement of melt–air interface is significant. The present study conducted a water model experiment and numerical simulation focusing on the movement of gas–liquid interface. The present study found that the oxide film can be entrained by two phenomena: (1) local surface vortex and (2) sloshing near the vessel wall. The local surface vortex is formed due to the pressure distribution around the impeller, and the sloshing is caused by macroinstabilities, which is generated by the discharged flow of axial-flow impeller. Besides, the shape of gas–liquid interface is dependent on the impeller shape. The axial-flow impeller gives rise to steeply curved shape of gas–liquid interface near the impeller shaft.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    M. E. Schlesinger (2014) Aluminum Recycling, 2nd edition. CRC Press, Boca Raton.

    Google Scholar 

  2. 2.

    J.-F. Bilodeau and Y. Kocaefe: in Light Metals, TMS, New York, 2001, pp. 1009–1015.

  3. 3.

    L.I. Kiss and J.F. Bilodeau: Proceedings of Conference on Metallurgists, 2001, Toronto.

  4. 4.

    F. Kerdouss, L. Kiss, P. Proulx, J. F. Bilodeau, C. Dupuis: Int. J. Chem. Reactor Eng., 2005, vol. 3, pp. A35. 10.2202/1542-6580.1217

    Article  Google Scholar 

  5. 5.

    J.L. Song, M.R. Jolly, M. Kimata, W. Bujalski, and A.W. Nienow: in Proceesings of Third International Conference on CFD in the Minerals and Process Industries, 2003, pp. 65–70, Melbourne, Australia, 10–12 December 2003.

  6. 6.

    F. Chiti, A. Paglianti, W. Bujalski: Chem. Eng. Res. Des., 2004, vol. 82, pp. 1105-1111. 10.1205/cerd.82.9.1105.44156.

    CAS  Article  Google Scholar 

  7. 7.

    W. Bujalski, M. Kimata, N. Nayan, J. L. Song, M. R. Jolly, A. W. Nienow: Chem. Eng. Technol., 2004, vol. 27, pp. 310-314. 10.1002/ceat.200401982.

    CAS  Article  Google Scholar 

  8. 8.

    T. Yamamoto, K. Kato, S. V. Komarov, Y. Ueno, M. Hayashi, Y. Ishiwata: J. Mater. Process. Technol., 2018, vol. 259, pp. 409-415. 10.1016/j.jmatprotec.2018.04.025.

    CAS  Article  Google Scholar 

  9. 9.

    T. Yamamoto, A. Suzuki, S. V. Komarov, Y. Ishiwata: J. Mater. Process. Technol., 2018, vol. 261, pp. 164-172. 10.1016/j.jmatprotec.2018.06.012.

    CAS  Article  Google Scholar 

  10. 10.

    T. Yamamoto, Y. Fang, S. V. Komarov: Chem. Eng. Sci., 2019, vol. 197, pp. 26-36. 10.1016/j.ces.2018.12.007.

    CAS  Article  Google Scholar 

  11. 11.

    V. S. Warke, S. Shankar, M. M. Makhlouf: J. Mater. Process. Technol., 2005, vol. 168, pp. 119-126. 10.1016/j.jmatprotec.2004.10.016.

    CAS  Article  Google Scholar 

  12. 12.

    V. S. Warke, G. Tryggvason, M. M. Makhlouf: J. Mater. Process. Technol., 2005, vol. 168, pp. 112-118. 10.1016/j.jmatprotec.2004.10.017.

    CAS  Article  Google Scholar 

  13. 13.

    M. Saternus: J. Achiev. Mater. Manuf. Eng., 2012, vol. 55, pp. 285-290.

    Google Scholar 

  14. 14.

    E. R. Gómez, R. Zenit, C. G. Rivera, G. Trápaga, M. A. Ramírez-Argáez: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 423-435. 10.1007/s11663-012-9774-8.

    CAS  Article  Google Scholar 

  15. 15.

    E. R. Gómez, R. Zenit, C. G. Rivera, G. Trápaga, M. A. Ramírez-Argáez: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 974-983. 10.1007/s11663-013-9845-5.

    CAS  Article  Google Scholar 

  16. 16.

    M. Hernández-Hernández, J. L. Camacho-Martínez, C. González-Rivera, M. A. Ramírez-Argáez: J. Mater. Process. Technol., 2016, vol. 236, pp. 1-8. 10.1016/j.jmatprotec.2016.04.031.

    CAS  Article  Google Scholar 

  17. 17.

    E. Mancilla, W. Cruz-Méndez, I. E. Garduño, C. González-Rivera, M. A. Ramírez-Argáez, G. Ascanio: Chem. Eng. Res. Des., 2017, vol. 118, pp. 158-165. 10.1016/j.cherd.2016.11.031.

    CAS  Article  Google Scholar 

  18. 18.

    D. Abreu-López, A. Amaro-Villeda, F. A. Acosta-González, C. González-Rivera, M. A. Ramírez-Argáez: Metals 2017, vol. 7, pp. 132. 10.3390/met7040132.

    CAS  Article  Google Scholar 

  19. 19.

    D. Abreu-López, A. Dutta, J. L. Camacho-Martínez, G. Trápaga-Martínez, M. A. Ramírez-Argáez: JOM, 2018, vol. 70, pp. 2958-2967. 10.1007/s11837-018-3147-y.

    CAS  Article  Google Scholar 

  20. 20.

    E. Mancilla, W. Cruz-Méndez, M. A. Ramírez-Argáez, C. González-Rivera, G. Ascanio (2019): Can. J. Chem. Eng. 97(1), 1729-1740. 10.1002/cjce.23432.

    CAS  Article  Google Scholar 

  21. 21.

    F. Czerwinski, G. Birsan: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 983-992. 10.1007/s11663-016-0879-3.

    CAS  Article  Google Scholar 

  22. 22.

    B. Wan, W. Chen, M. Mao, Z. Fu, D. Zhu: J. Mater. Process. Technol., 2018, vol. 251, pp. 330-342. 10.1016/j.jmatprotec.2017.09.001.

    CAS  Article  Google Scholar 

  23. 23.

    A. Ahmadpour, R. Raiszadeh, H. Doostmohammadi: Int. J. Cast Metals Res., 2014, vol. 27, pp. 221-229. 10.1179/1743133613Y.0000000100.

    CAS  Article  Google Scholar 

  24. 24.

    D. Dispinar, S. Akhtar, A. Nrdmark, M. D. Sabatino, L. Arnberg: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3719-3725. 10.1016/j.msea.2010.01.088.

    CAS  Article  Google Scholar 

  25. 25.

    S. Nagata: Mixing: Principles and applications, 1975, Halsted Press, New York.

    Google Scholar 

  26. 26.

    F. Rieger, P. Ditl, V. Novak: Chem. Eng. Sci., 1979, vol. 34, pp. 397-403. 10.1016/0009-2509(79)85073-3.

    CAS  Article  Google Scholar 

  27. 27.

    S. S. Deshpande, K. K. Kar, J. Walker, J. Pressler, W. Su: Chem. Eng. Sci., 2017, vol. 168, pp. 495-506. 10.1016/j.ces.2017.04.002.

    CAS  Article  Google Scholar 

  28. 28.

    A. Busciglio, G. Caputo, F. Scargiali: Chem. Eng. Sci., 2013, vol. 104, pp. 868-880. 10.1016/j.ces.2013.10.019.

    CAS  Article  Google Scholar 

  29. 29.

    T. Yamamoto, Y. Fang, S. V. Komarov: Chem. Eng. J., 2019, vol. 367, pp. 25-36. 10.1016/j.cej.2019.02.130.

    CAS  Article  Google Scholar 

  30. 30.

    H.G. Weller: Technical Report. TR/HGW/04, OpenCFD Ltd., 2008.

  31. 31.

    H. Rusche: Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions, Ph.D. thesis, Imperial Collage of Science, Technology and Medicine, London, 2002.

  32. 32.

    T. Yamamoto, Y. Okano, S. Dost: Int. J. Num. Meth. Fluids, 2017, vol. 83, pp. 223-244. 10.1002/fld.4267.

    CAS  Article  Google Scholar 

  33. 33.

    H. K. Versteeg, W. Malalasekera: An introduction to computational fluid dynamics, the finite volume method, Longman Group Ltd., Harlow, 1995.

    Google Scholar 

  34. 34.

    A. I. Kulkarni, A. W. Patwardhan: Chem. Eng. Res. Des., 2014, vol. 92, pp. 1227-1248.

    CAS  Article  Google Scholar 

  35. 35.

    B. N. Murthy and J. B. Joshi: Chem. Eng. Sci., 2008, vol. 63, pp. 5468-5495. 10.1016/j.ces.2008.06.019.

    CAS  Article  Google Scholar 

  36. 36.

    B. van Leer: J. Comput. Phys., 1974, vol. 14, pp. 361-370. 10.1016/0021-9991(74)90019-9.

    Article  Google Scholar 

  37. 37.

    R. I. Issa: J. Comput. Phys., 1986, vol. 62, pp. 40-65. 10.1016/0021-9991(86)90099-9.

    Article  Google Scholar 

  38. 38.

    Y. Dubief, F. Delcayre: J. Turbul., 2001, vol. 1, pp. N11. 10.1088/1468-5248/1/1/011.

    Article  Google Scholar 

  39. 39.

    M. Jahoda, M. Mostek, I. Fort, P. Hasai: Can. J. Chem. Eng., 2011, vol. 89, pp. 717-724. 10.1002/cjce.20477.

    CAS  Article  Google Scholar 

Download references


The present research is supported partly by the Initiative on Promotion of Supercomputing for Young or Women Researchers, Supercomputing Division, Information Technology Center, The University of Tokyo.

Author information



Corresponding author

Correspondence to Takuya Yamamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 18, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, T., Kato, W., Komarov, S.V. et al. Investigation on the Surface Vortex Formation During Mechanical Stirring with an Axial-Flow Impeller Used in an Aluminum Process. Metall Mater Trans B 50, 2547–2556 (2019).

Download citation