An EXAFS and XANES Study of V, Ni, and Fe Speciation in Cokes for Anodes Used in Aluminum Production


Lower-quality petroleum coke with higher levels of sulfur and metal impurities will have to be used for the manufacturing of anodes for aluminum production in the future. The sulfur and metallic impurities affect the anode properties in the aluminum production process, but the chemical identity of the metal species in the coke is not known. In this study, industrial petroleum cokes with high sulfur levels were analyzed by X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS) in order to determine the identity of the V, Ni, and Fe impurities. The XANES spectra were compared with pure-phase standards. EXAFS was used to compare the impurity metal structures with known crystal structures. It was found that V is present mainly as hexagonal V3S4. Ni is present mainly as hexagonal NiS, and Fe is present as hexagonal FeS. This knowledge of the chemical states of the metal elements in coke, which are known to affect anode performance, is the first step in understanding the mechanism of the action of these elements on anode reactivity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Adapted from Ref. [25] with permission

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13



Crystallography open database


Calcined petroleum coke


Extended X-ray absorption fine structure


Linear combination fit


X-ray absorption fine structure


X-ray absorption near edge structure


X-ray absorption spectroscopy


X-ray diffraction


X-ray fluorescence


  1. 1.

    J. Thonstad, P. Fellner, G. M. Haarberg, J. Híveš, H. Kvande and Å. Sterten: Aluminium electrolysis : fundamentals of the Hall-Héroult process. 3rd ed. ed. (Aluminium-Verlag, Düsseldorf, 2001).

    Google Scholar 

  2. 2.

    L. Edwards, JOM 2015, vol. 67, pp. 308-321.

    CAS  Article  Google Scholar 

  3. 3.

    G. J. Houston and H. A. Øye: Consumption of anode carbon during aluminium electrolysis. (Aluminium-Verlag, Düsseldorf, 1985).

    Google Scholar 

  4. 4.

    T. Eidet and J. Thonstad (1997) Light Met. 1997, pp. 436-437.

    Google Scholar 

  5. 5.

    Z.Y. Li, NB Zhang and LY Wen, Asian J. Chem. 2016, vol. 28, pp. 1703-1707.

    CAS  Article  Google Scholar 

  6. 6.

    L. Edwards: Light Metals, Springer, Cham, 2014, pp. 1093–98.

    Google Scholar 

  7. 7.

    T. Eidet, J. Thonstad, and M. Sørlie: Light Metals, TMS, Warrendale, PA, 1997, pp. 511–17.

    Google Scholar 

  8. 8.

    J. dos Santos Batista and B. I. da Silveira, Mater. Res. 2008, vol. 11, pp. 387-390.

    Article  Google Scholar 

  9. 9.

    S.M. Hume, W.K. Fischer, R.C. Perruchoud, J.B. Metson, and J.B. Baker, Light Met. 1993, pp. 535–41.

  10. 10.

    Y. Di Bensah and T. Foosnaes, J. Eng. Appl. Sci. 2010, vol. 5, pp. 35-43.

    Google Scholar 

  11. 11.

    M. Sørlie (1994) Light Met. vol. 1994, p. 659–665.

    Google Scholar 

  12. 12.

    S. J. Hay, J. B. Metson and M. M. Hyland, Ind. Eng. Chem. Res. 2004, vol. 43, pp. 1690-1700.

    CAS  Article  Google Scholar 

  13. 13.

    J. Xiao, Q. Zhong, F. Li, J. Huang, Y. Zhang and B. Wang, Energy Fuels 2015, vol. 29, pp. 3345-3352.

    CAS  Article  Google Scholar 

  14. 14.

    Q. Zhong, J. Xiao, H. Du and Z. Yao, Energy Fuels 2017, vol. 31, pp. 4539-4547.

    CAS  Article  Google Scholar 

  15. 15.

    J. Xiao, S.-Y. Deng, Q.-F Zhong and S.-L. Ye, T. Nonferr. Metal. Soc. 2014, vol. 24, pp. 3702-3709.

    CAS  Google Scholar 

  16. 16.

    G. Jahrsengene, H. C. Wells, S. Rørvik, A. P. Ratvik, R. G. Haverkamp and A. M. Svensson, Metall. Mater. Trans. B 2018, vol. 49, pp. 1434-1443.

    Article  Google Scholar 

  17. 17.

    G. Caumette, C. P. Lienemann, I. Merdrignac, B. Bouyssiere and R. Lobinski, J. Anal. Atom. Spectrom. 2009, vol. 24, pp. 263-276.

    CAS  Article  Google Scholar 

  18. 18.

    J. Goulon, A. Retournard, P. Friant, C. Goulon-Ginet, C. Berthe, J. Muller, J. Poncet, R. Guilard, J. Escalier and B. Neff, J. Chem. Soc. Dalton 1984, vol. 6, pp. 1095-1103.

    Article  Google Scholar 

  19. 19.

    G. P. Dechaine and M. R. Gray, Energy Fuels 2010, vol. 24, pp. 2795-2808.

    CAS  Article  Google Scholar 

  20. 20.

    J. G. Reynolds and W. R. Biggs, Acc. Chem. Res. 1988, vol. 21, pp. 319-326.

    CAS  Article  Google Scholar 

  21. 21.

    John G. Reynolds, Emilio J. Gallegos, Richard H. Fish and John J. Komlenic, Energy Fuels 1987, vol. 1, pp. 36-44.

    CAS  Article  Google Scholar 

  22. 22.

    P. Kappen and G. Ruben: Sakura: A Tool to Pre-process XAS Data.

  23. 23.

    B. Ravel and M. Newville, J. Synchrotron Rad. 2005, vol. 12, pp. 537-541.

    CAS  Article  Google Scholar 

  24. 24.

    S. Graulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck and A. Le Bail, J. Appl. Crystallogr. 2009, vol. 42, pp. 726-729.

    Article  Google Scholar 

  25. 25.

    G. Jahrsengene, H.C. Wells, C. Sommerseth, A.P. Ratvik, L.P. Lossius, R.G. Haverkamp, and A.M. Svensson: Travaux ICSOBA, 2017, vol. 46, pp 617-624.

    Google Scholar 

  26. 26.

    M. A. Duchesne, J. Nakano, Y. Hu, A. MacLennan, J. Bennett, A. Nakano and R. W. Hughes, Fuel 2018, vol. 227, pp. 279-288.

    CAS  Article  Google Scholar 

  27. 27.

    B. M. Rytting, I. D. Singh, P. K. Kilpatrick, M. R. Harper, A. S. Mennito and Y. Zhang, Energy Fuels 2018, vol. 32, pp. 5711-5724.

    CAS  Article  Google Scholar 

  28. 28.

    G. Liu, X. Xu and J. Gao, Energy Fuels 2004, vol. 18, pp. 918-923.

    CAS  Article  Google Scholar 

  29. 29.

    J. T. Miller and R. B. Fisher, Energy Fuels 1999, vol. 13, pp. 719-727.

    CAS  Article  Google Scholar 

  30. 30.

    J. A. Nesbitt and M. B. J. Lindsay, Environ. Sci. Technol. 2017, vol. 51, pp. 3102-3109.

    CAS  Article  Google Scholar 

  31. 31.

    J. A. Nesbitt, J. M. Robertson, L. A. Swerhone and M. B. J. Lindsay, FACETS 2018, vol. 3, pp. 469-486.

    Article  Google Scholar 

  32. 32.

    J. A. Nesbitt, M. B. J. Lindsay and N. Chen, Appl. Geochem. 2017, vol. 76, pp. 148-158.

    CAS  Article  Google Scholar 

  33. 33.

    Z. J. Zhou, Q. J. Hu, X. Liu, G. S. Yu and F. C. Wang, Energy Fuels 2012, vol. 26, pp. 1489-1495.

    CAS  Article  Google Scholar 

  34. 34.

    J.G. Rolle and Y.K. Hoang: Light Metals, TMS, Warrendale, PA, 1995, pp. 741–45.

    Google Scholar 

  35. 35.

    L. Ren, R. Wei and Y. Gao, Fuel 2017, vol. 190, pp. 245-252.

    CAS  Article  Google Scholar 

Download references


Financial supports from the Norwegian Research Council and the partners Hydro Aluminum, Alcoa, Elkem Carbon, and Skamol through the project “Reactivity of Carbon and Refractory Materials used in Metal Production Technology” (CaRMa) are duly acknowledged. This research was undertaken on the XAS beamline at the Australian Synchrotron, a part of the Australian Nuclear Science and Technology Organization (ANSTO).

Author information



Corresponding author

Correspondence to Richard G. Haverkamp.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 2, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1828 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jahrsengene, G., Wells, H.C., Sommerseth, C. et al. An EXAFS and XANES Study of V, Ni, and Fe Speciation in Cokes for Anodes Used in Aluminum Production. Metall Mater Trans B 50, 2969–2981 (2019).

Download citation