A Review of Methodology Development for Controlling Loss of Alloying Elements During the Electroslag Remelting Process

Abstract

Electroslag remelting (ESR) is an advanced secondary refining technology for the production of clean, fully dense, and homogeneous castings of steels and alloys by removal of undesirable elements and nonmetallic inclusions. However, because of some potential reactions between reactive elements, i.e., Al and Ti, in liquid metal and oxygen as well as weak oxides, such as FeO and SiO2, in slag during the ESR process, it is impossible to hold those oxidative elements within specification or to maintain them uniformly from the bottom to top of the resultant ingot. According to a literature survey, recent fundamental research on the oxidation behaviors of Al and Ti in nickel-based alloy by ESR-type slag is scarce. Therefore, summarizing previous knowledge on the controlling loss reactive elements during ESR of Fe- and Ni-based alloys in view of thermodynamics and kinetics is in order to increase the basic understanding of the reaction mechanism between those elements and oxygen and weak oxides in the slag, which can guide the development of a new remelting technique that retards the oxidation of Al and Ti in Inconel 718 alloys during the ESR process. The presence of impurity elements, such as oxygen and sulfur, can also deteriorate the mechanical properties of metal products. Therefore, the inter-related literature about desulfurization during the ESR process is also reviewed in this article.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Notes

  1. 1.

    INCONEL® is a registered trademark of the Special Metals family of companies.

References

  1. 1.

    A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado: J. Mater. Process. Technol., 2006, vol. 177, pp. 469–72.

    Article  CAS  Google Scholar 

  2. 2.

    Y.C. Liu, Q.Y. Guo, C. Li, Y.P. Mei, X.S. Zhou, Y. Huang, and H.J. Li: Acta Metall. Sin., 2016, vol. 52, pp. 1259–66.

    CAS  Google Scholar 

  3. 3.

    G.W. Meetham: J. Mater. Sci., 1991, vol. 26, pp. 853–60.

    Article  CAS  Google Scholar 

  4. 4.

    X. Shi, S. Duan, W. Yang, H. Guo, and J. Guo: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1883–97.

    Article  CAS  Google Scholar 

  5. 5.

    E.A. Loria: JOM, 1992, vol. 44, pp. 33–36.

    Article  CAS  Google Scholar 

  6. 6.

    S. Chang: J. Alloys Compds., 2009, vol. 486, pp. 716–21.

    Article  CAS  Google Scholar 

  7. 7.

    J.P. Collier, S.H. Wong, J.K. Tien, and J.C. Phillips: Metall. Trans. A, 1988, vol. 19A, pp. 1657–66.

    Article  CAS  Google Scholar 

  8. 8.

    R. Cozar and A. Pineau: Metall. Trans., 1973, vol. 4, pp. 47–59.

    Article  CAS  Google Scholar 

  9. 9.

    B.I. Medovar and G.A. Boyko: Electroslag Remelting, Springer, New York, NY, 1991, pp. 155–64.

    Google Scholar 

  10. 10.

    A. Mitchell, J. Szekely, and J.F. Elliott: Electroslag Refining, Iron and Steel Institute, London, 1973, pp. 1–11.

  11. 11.

    Y. Dong, Z. Jiang, Y. Cao, A. Yu, and D. Hou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1315–24.

    Article  CAS  Google Scholar 

  12. 12.

    Q. Wang, R. Wang, Z. He, G. Li, B. Li, and H. Li: Int. J. Heat Mass Transfer, 2018, vol. 125, pp. 1333–44.

    Article  Google Scholar 

  13. 13.

    B.M. Patchett and D.R. Milner: Weld. J., 1972, vol. 51, pp. 491–505.

    Google Scholar 

  14. 14.

    M. Etienne and A. Mitchell: Electric Furn. Proc., 1970, vol. 28, pp. 28–32.

    CAS  Google Scholar 

  15. 15.

    D.K. Melgaard, R.L. Williamson, and J.J. Beaman: JOM, 1998, vol. 50, pp. 13–17.

    Article  CAS  Google Scholar 

  16. 16.

    S. Duan, X. Shi, M. Mao, W. Yang, S. Han, H. Guo, and J. Guo: Sci. Rep., 2018, vol. 8, p. 5232.

    Article  CAS  Google Scholar 

  17. 17.

    J.W. Tommaney, P.S. Andolina, and R.C. Buri: U.S. Patent 4,953,177, 1990.

  18. 18.

    K.C. Mills and B.J. Keene: Int. Met. Rev., 1981, vol. 26, pp. 21–69.

    Article  CAS  Google Scholar 

  19. 19.

    Z.H. Jiang, Y.W. Dong, X. Geng, and F.B. Liu: Electroslag Metallurgy, Science Press, Beijing, 2015.

    Google Scholar 

  20. 20.

    Z.B. Li: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, 2010.

    Google Scholar 

  21. 21.

    M. Sasabe and K.S. Goto: Metall. Trans., 1974, vol. 5, pp. 2225–33.

    Article  CAS  Google Scholar 

  22. 22.

    C.X. Chen, Y. Wang, J. Fu, and E.P. Chen: Acta Metall. Sinica, 1981, vol. 17, pp. 50–57.

    CAS  Google Scholar 

  23. 23.

    L.Z. Chang, X.F. Shi, and J.Q. Cong: Ironmak. Steelmak., 2014, vol. 41, pp. 182–86.

    Article  CAS  Google Scholar 

  24. 24.

    X. Huang, B. Li, and Z. Liu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 709–22.

    Article  CAS  Google Scholar 

  25. 25.

    X.C. Chen, C.B. Shi, F. Wang, H. Ren, and H.J. Guo: J. Mater. Metall., 2013, vol. 12, pp. 27–32.

    CAS  Google Scholar 

  26. 26.

    X. Chen, C. Shi, H. Guo, F. Wang, H. Ren, and D. Feng: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1596–1607.

    Article  CAS  Google Scholar 

  27. 27.

    L. Zhang, A. Allanore, C. Wang, J.A. Yurko, and J. Crapps: Materials Processing Fundamentals, Springer International Publishing, Cham, 2016, pp. 31–38.

    Google Scholar 

  28. 28.

    D.D. Wegman: “Investigation into Critical Parameters Which Determine the Oxygen Refining Capability of the Slag During Electroslag Remelting of Alloy 718,” Lehigh University, Bethlehem, PA, 1993.

    Google Scholar 

  29. 29.

    D.D. Wegman: Proc. 6th Int. Symp. on Superalloys Sponsored by the High Temperature Alloys Committee of the Metallurgical Society of AIME, TMS-AIME, Warrendale, PA, 1988.

  30. 30.

    A. Mitchell, F. Reyes-Carmona, and E. Samuelsson: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 547–56.

    Article  CAS  Google Scholar 

  31. 31.

    F. Reyes-Carmona and A. Mitchell: ISIJ Int., 1992, vol. 32, pp. 529–37.

    Article  CAS  Google Scholar 

  32. 32.

    D. Hou, Z.H. Jiang, Y.W. Dong, and W.J. Zhou: J. Northeast. Univ., 2016, vol. 37, pp. 668–72.

    CAS  Google Scholar 

  33. 33.

    F. Wang, X.C. Chen, and H.J. Guo: Adv. Mater. Res., 2012, vols. 476–478, pp. 218–26.

    Google Scholar 

  34. 34.

    C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, and X.L. Sun: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 378–89.

    Article  CAS  Google Scholar 

  35. 35.

    C. Shi, X. Chen, H. Guo, Z. Zhu, and H. Ren: Steel Res. Int., 2012, vol. 83, pp. 472–86.

    Article  CAS  Google Scholar 

  36. 36.

    F. Wang, X.C. Chen, C.B. Shi, and H.J. Guo: J. Mater. Metall., 2012, vol. 11, pp. 258–64.

    CAS  Google Scholar 

  37. 37.

    M. Sasabe and Y. Kinoshita: Tetsu-to-Hagané, 1979, vol. 65, pp. 1727–36.

    Article  CAS  Google Scholar 

  38. 38.

    J.H. Wei and Z.Y. Liu: Acta Metall. Sinica, 1994, vol. 30, pp. 350–60.

    Google Scholar 

  39. 39.

    Y. Liu, X. Wang, G. Li, Q. Wang, Z. Zhang, and B. Li: Vacuum, 2018, vol. 154, pp. 351–58.

    Article  CAS  Google Scholar 

  40. 40.

    Y. Taniguchi, K. Morita, and N. Sano: ISIJ Int., 1997, vol. 37, pp. 956–61.

    Article  CAS  Google Scholar 

  41. 41.

    M. Iwase, H. Akizuki, E. Ichise, and Y. Tanaka: Steel Res., 1986, vol. 57, pp. 436–43.

    Article  CAS  Google Scholar 

  42. 42.

    X. Yang, C. Shi, M. Zhang, and J. Zhang: Steel Res. Int., 2012, vol. 83, pp. 244–58.

    Article  CAS  Google Scholar 

  43. 43.

    J.H. Park and D.J. Min: Steel Res. Int., 2004, vol. 75, pp. 807–11.

    Article  CAS  Google Scholar 

  44. 44.

    X. Huang, B. Li, and Z. Liu: Int. J. Heat Mass Transfer, 2018, vol. 120, pp. 458–70.

    Article  CAS  Google Scholar 

  45. 45.

    Q. Wang, G. Li, Y. Gao, Z. He, and B. Li: J. Appl. Electrochem., 2017, vol. 47, pp. 445–56.

    Article  CAS  Google Scholar 

  46. 46.

    Q. Wang, F. Wang, G. Li, Y. Gao, and B. Li: Int. J. Heat Mass Transfer, 2017, vol. 113, pp. 1021–30.

    Article  CAS  Google Scholar 

  47. 47.

    S. Li, G. Cheng, Z. Miao, L. Chen, C. Li, and X. Jiang: ISIJ Int., 2017, vol. 57, pp. 2148–56.

    Article  CAS  Google Scholar 

  48. 48.

    H. Wang, Y. Zhong, Q. Li, Y. Fang, W. Ren, Z. Lei, and Z. Ren: ISIJ Int., 2016, vol. 56, pp. 255–63.

    Article  CAS  Google Scholar 

  49. 49.

    G. Pateisky, H. Biele, and H.J. Fleischer: J. Vac. Sci. Technol., 1972, vol. 9, pp. 1318–21.

    Article  CAS  Google Scholar 

  50. 50.

    Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1465–74.

    Article  CAS  Google Scholar 

  51. 51.

    A.I. Zaitsev, N.V. Korolyov, and B.M. Mogutnov: J. Chem. Thermodyn., 1990, vol. 22, pp. 513–30.

    Article  CAS  Google Scholar 

  52. 52.

    A.I. Zaitsev, N.V. Korolyov, and B.M. Mogutnov: J. Chem. Thermodyn., 1990, vol. 22, pp. 531–43.

    Article  CAS  Google Scholar 

  53. 53.

    C. Shi, J. Li, J. Cho, F. Jiang, and I. Jung: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2110–20.

    Article  CAS  Google Scholar 

  54. 54.

    D. Hou, Z. Jiang, Y. Dong, W. Gong, Y. Cao, and H. Cao: ISIJ Int., 2017, vol. 57, pp. 1400–09.

    Article  CAS  Google Scholar 

  55. 55.

    S.C. Duan, H.J. Guo, X. Shi, J. Guo, B. Li, S.W. Han, and W.S. Yang: Chin. J. Eng., 2018, vol. 40, pp. 53–64.

    Google Scholar 

  56. 56.

    M.E. Fraser and A. Mitchell: Ironmak. Steelmak., 1976, vol. 3, pp. 279–87.

    CAS  Google Scholar 

  57. 57.

    G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, and W.F. Hammetter: Metall. Trans. A, 1989, vol. 20A, pp. 2149-58.

    Article  CAS  Google Scholar 

  58. 58.

    J.H. Wei and A. Mitchell: Acta Metall. Sinica, 1984, vol. 20, pp. 406–13.

    Google Scholar 

  59. 59.

    D. Hou, Z. Jiang, Y. Dong, W. Gong, Y. Cao, and H. Cao: ISIJ Int., 2017, vol. 57, pp. 1410–19.

    Article  CAS  Google Scholar 

  60. 60.

    J.G. Yang and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2147–56.

    Article  CAS  Google Scholar 

  61. 61.

    D. Hou, Z. Jiang, Y. Dong, Y. Li, W. Gong, and F. Liu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1885–97.

    Article  CAS  Google Scholar 

  62. 62.

    D. Hou, Z. Jiang, Y. Dong, Y. Cao, H. Cao, and W. Gong: Ironmak. Steelmak., 2016, vol. 43, pp. 517–25.

    Article  CAS  Google Scholar 

  63. 63.

    A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig, and J. Bohacek: Steel Res. Int., 2018, vol. 89, p. 1700100.

    Article  CAS  Google Scholar 

  64. 64.

    J.H. Wei and A. Mitchell: Acta Metall. Sinica, 1984, vol. 20, pp. 387–405.

    Google Scholar 

  65. 65.

    C.X. Chen, R.F. Gao, and W.X. Zhao: Acta Metall. Sinica, 1984, vol. 20, pp. 137–45.

    Google Scholar 

  66. 66.

    D. Hou, F. Liu, T. Qu, Z. Jiang, D. Wang, and Y. Dong: ISIJ Int., 2018, vol. 58, pp. 876–85.

    Article  CAS  Google Scholar 

  67. 67.

    C.L. White and D.F. Stein: Metall. Trans. A, 1978, vol. 9A, pp. 13–22.

    Article  CAS  Google Scholar 

  68. 68.

    W.R. Sun, S.R. Guo, D.Z. Lu, and Z.O. Hu: Mater. Lett., 1997, vol. 31, pp. 195–200.

    Article  CAS  Google Scholar 

  69. 69.

    W. Wallace, R.T. Holt, and T. Terada: Metallography, 1973, vol. 6, pp. 511–26.

    Article  CAS  Google Scholar 

  70. 70.

    E.P. Whelan and M.S. Grzedzielski: Met. Technol., 1974, vol. 1, pp. 186–90.

    Article  Google Scholar 

  71. 71.

    Q. Li, H. Zhang, M. Gao, J. Li, T. Tao, and H. Zhang: Int. J. Miner., Metall. Mater., 2018, vol. 25, pp. 696–703.

  72. 72.

    J. Li, H. Zhang, M. Gao, Q. Li, J. Zhang, B. Yang, and H. Zhang: Rare Met., 2018, https://doi.org/10.1007/s12598-018-1103-1.

  73. 73.

    J. Morscheiser, L. Thönnessen, B. Friedrich, and M. Recycling: Sulphur Control in Nickel-Based Superalloy Production, 6th Eur. Metallurgical Conf. EMC 2011, Duesseldorf, 2011.

  74. 74.

    M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, 2nd ed., ASM International, Materials Park, OH, 2002.

    Google Scholar 

  75. 75.

    J.P. Niu, K.N. Yang, X.F. Sun, T. Jin, H.R. Guan, and Z.Q. Hu: Acta Metall. Sinica, 2002, vol. 38, pp. 303–08.

    CAS  Google Scholar 

  76. 76.

    J.P. Niu, K.N. Yang, X.F. Sun, T. Jin, H.R. Guan, and Z.Q. Hu: Rare Met. Mater. Eng., 2003, vol. 32, pp. 63–66.

    CAS  Google Scholar 

  77. 77.

    A. Choudhury: ISIJ Int., 1992, vol. 32, pp. 563–74.

    Article  CAS  Google Scholar 

  78. 78.

    A.K. Vaish, G.V.R. Iyer, P.K. De, B.A. Lakra, A.K. Chakrabarti, and P. Ramachandrarao: J. Metall. Mater. Sci., 2000, vol. 42, pp. 11–29.

    CAS  Google Scholar 

  79. 79.

    A. Mitchell: J. Vac. Sci. Technol., 1970, vol. 6, pp. S63–S73.

    Article  Google Scholar 

  80. 80.

    C. Guo, S. Shang, Z. Du, P.D. Jablonski, M.C. Gao, and Z. Liu: Calphad, 2015, vol. 48, pp. 113–22.

    Article  CAS  Google Scholar 

  81. 81.

    S. Ban-Ya, M. Hobo, T. Kaji, T. Itoh, and M. Hino: ISIJ Int., 2004, vol. 44, pp. 1810–16.

    Article  CAS  Google Scholar 

  82. 82.

    A. Bronson and G.R.S. Pierre: Metall. Trans. B, 1979, vol. 10B, pp. 375–80.

    Article  CAS  Google Scholar 

  83. 83.

    M. Ohta, T. Kubo, and K. Morita: Tetsu-to-Hagané, 2003, vol. 89, pp. 742–49.

    Article  CAS  Google Scholar 

  84. 84.

    C. Choi, S. Jo, S. Kim, K. Lee, and J. Kim: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 115–20.

    Article  CAS  Google Scholar 

  85. 85.

    S.R. Simeonov, I.N. Ivanchev, and A.V. Hainadjiev: ISIJ Int., 1991, vol. 31, pp. 1396–99.

    Article  CAS  Google Scholar 

  86. 86.

    H.B. Bell: Can. Metall. Q., 1981, vol. 20, pp. 169–79.

    Article  CAS  Google Scholar 

  87. 87.

    G. Zhang, K. Chou, and U. Pal: ISIJ Int., 2013, vol. 53, pp. 761–67.

    Article  CAS  Google Scholar 

  88. 88.

    N.Q. Minh and T.B. King: Metall. Trans. B, 1979, vol. 10B, pp. 623–29.

    Article  Google Scholar 

  89. 89.

    M. Eissa and A. EI Mohammadi: Steel Res. Int., 1998, vol. 69, pp. 413–17.

    Article  CAS  Google Scholar 

  90. 90.

    J. Morscheiser, L. Thönessen, B. Gehrmann, and B. Friedrich: The Influence of the Slag Composition on the Desulphurization of Nickel-Based Superalloys, 2012, https://doi.org/10.13140/RG.2.1.4020.8247.

  91. 91.

    Q. Wang, G. Li, Z. He, and B. Li: Appl. Therm. Eng., 2017, vol. 114, pp. 874–86.

    Article  CAS  Google Scholar 

  92. 92.

    X. Li, X. Geng, Z.H. Jiang, H.B. Li, F.H. XU, and L.X. Wang: Iron Steel, 2015, vol. 50, pp. 41–46.

  93. 93.

    X.C. Chen, F. Wang, C.B. Shi, H. Ren, and H.J. Guo: J. Mater. Metall., 2012, vol. 11, pp. 252–57.

    CAS  Google Scholar 

  94. 94.

    Q. Wang, Y. Liu, Z. He, G. Li, and B. Li: ISIJ Int., 2017, vol. 57, pp. 329–36.

    Article  CAS  Google Scholar 

  95. 95.

    Q. Wang, Y. Liu, F. Wang, G. Li, B. Li, and W. Qiao: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2649–63.

    Article  CAS  Google Scholar 

  96. 96.

    Q. Wang, Z. He, G. Li, B. Li, C. Zhu, and P. Chen: Int. J. Heat Mass Transfer, 2017, vol. 104, pp. 943–51.

    Article  CAS  Google Scholar 

  97. 97.

    Q. Wang, Y. Liu, G. Li, Y. Gao, Z. He, and B. Li: Appl. Therm. Eng., 2018, vol. 129, pp. 378–88.

    Article  CAS  Google Scholar 

  98. 98.

    S.C. Duan, X. Shi, F. Wang, M.C. Zhang, B. Li, W.S. Yang, H.J. Guo, and J. Guo: J. Mater. Res. Technol., 2019, vol. 8, pp. 2508–16.

    Article  CAS  Google Scholar 

  99. 99.

    W. Lou and M. Zhu: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1706–22.

    Article  CAS  Google Scholar 

  100. 100.

    R.J. Pomfret and P. Grieveson: Can. Metall. Q., 1983, vol. 22, pp. 287–99.

    Article  CAS  Google Scholar 

  101. 101.

    C.Z. Wang: Research Methods in Metallurgical Physical Chemistry, Metallurgical Industry Press, Beijing, 2013.

    Google Scholar 

  102. 102.

    S. Duan, C. Li, H. Guo, J. Guo, S. Han, and W. Yang: Int. J. Miner., Metall. Mater., 2018, vol. 25, pp. 399–404.

Download references

Acknowledgments

The authors are thankful for the support from the National Natural Science Foundation of China (Grant Nos. U1560203, 51704021, and 51274031), the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-16-079A1), and the Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing (USTB), China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Han-Jie Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 12, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duan, SC., Shi, X., Wang, F. et al. A Review of Methodology Development for Controlling Loss of Alloying Elements During the Electroslag Remelting Process. Metall Mater Trans B 50, 3055–3071 (2019). https://doi.org/10.1007/s11663-019-01665-2

Download citation