Observational Study of Clogging Specimens from the Tundish Well Showing Origin and Growth of a Clog in an Al-Killed Ti-Alloyed Steel Cast


Post-mortem tundish skull samples of Ti-alloyed, Al-killed IF steel have been studied regarding the formation of clogging. By using modern characterization equipment and applied methods, we performed a detailed characterization of microstructures found in the tundish well. Aside from the primary metallographic examination, newly developed methods of particle size distribution analysis based on population density functions (PDF) and newly developed electron microscope EDS template mapping have been applied, allowing differentiation of complex particles according to phases and interphase contact relationships. Furthermore, detailed EDS analyses of individual inclusions with complex substructure regarding minor and trace elements within the alumina networks have been performed. These composite data on carefully selected clog microstructures allowed us to observe the presence of layering microstructures throughout the clog: “Coarse” layers (abundant microbubbles and internally complex alumina aggregates) and “Fine” layers (no microbubbles and complex alumina aggregates). Two populations of particles: Population I (2 to 5 µm) and a Population II (5 to 20 µm) build up the layers, both having lognormal PDF, in contrast to power-law PDF of secondary metallurgy inclusions. Coarse layers are further distinguished by selective concentrations of spinel with lognormal PDF as well as the occurrence of complex alumina particles with metal sub-inclusions often with elevated Cr, V, and Si content. Based on these observations, we derive a model for the origin and accumulation of the inclusions making up the clog, which suggests that the NMI of the two dominant populations do not come from the bulk steel, although secondary metallurgy-derived inclusions can be traced in the clog. Overall, microstructures show that the clog behaves as a coherent solid, and is able to displace and fracture.

This is a preview of subscription content, access via your institution.

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    G. C. Duderstadt, R. K. Iyengar, J. M. Matesa: J. Met., 1968, 20:89-94

    Google Scholar 

  2. 2.

    S. N. Singh: Metall. Trans., 1974, 5:2165-2178

    Article  Google Scholar 

  3. 3.

    K. Rackers and B.G. Thomas: in 78th Steelmaking Conf. Proc., 1995, vol. 78, pp. 723–34.

  4. 4.

    K. Sasai, Y. Mizukami: ISIJ Int., 1994, 34:802-809

    Article  Google Scholar 

  5. 5.

    K. Sasai, Y. Mizukami: ISIJ Int., 2001, 41:1331-1339

    Article  Google Scholar 

  6. 6.

    H. Tozawa, Y. Kato, K. Sorimachi, T. Nakanishi: ISIJ Int, 1999, 39:426-434

    Article  Google Scholar 

  7. 7.

    N. Kojola, S. Ekerot, M. Andersson, P. G. Joensson: Ironmaking Steelmaking, 2011, 38:1-11

    Article  Google Scholar 

  8. 8.

    WC Doo, DY Kim, SC Kang, KW Yi: ISIJ Int., 2007, 47:1070-1072

    Article  Google Scholar 

  9. 9.

    H. Lei, JC He: J. Non-Cryst. Solids, 2006, 352:3772-3780

    Article  Google Scholar 

  10. 10.

    O. Araromi, B.G. Thomas, E. Conzemius: Mat. Sci. Tech. Conf., AIST, 2009, pp. 1–10

  11. 11.

    S. Wu, Y. Wang, L. Zhang, and J. Zhang: AISTech 2009, Proceedings of the Iron & Steel Technology Conference, pp. 543–58

  12. 12.

    M. Long, X. Zuo, L. Zhang, D. Chen: ISIJ Int., 2010, 50:712-720

    Article  Google Scholar 

  13. 13.

    H. Barati, M. Wu, A. Kharicha, and A. Ludwig: Powder Technol., 2018, pp. 29181–98

  14. 14.

    M Andersson, J Appelberg, A Tilliander, K Nakajima, H Shibata, S Kitamura, L Jonsson, P Joensson: ISIJ Int., 2006, 46:814-823

    Article  Google Scholar 

  15. 15.

    W Fix, H Jacobi, K Wuennenberg: Steel Res. (1993), 64:71-76

    Article  Google Scholar 

  16. 16.

    Y Gao, K Sorimachi: ISIJ Int., 1993, 33:291-297

    Article  Google Scholar 

  17. 17.

    T Matsui, T Ikemoto, K Sawano, I Sawada: Taikabutsu Overseas, 1997, 18 3-9

    Google Scholar 

  18. 18.

    S Basu, S Choudhary, N Girase: ISIJ Int., 2004, 44:1653-1660

    Article  Google Scholar 

  19. 19.

    JH Lee, MH Kang, SK Kim, YB Kang: ISIJ Int. (2018), 58:1257-1266

    Article  Google Scholar 

  20. 20.

    F Tehovnik, J Burja, B Arh, M Knap: Metalurgija (2015) 54:371-374

    Google Scholar 

  21. 21.

    B Harcsik, P Tardy, G Karoly: Rev. Metall., (2012) 109:177-186

    Article  Google Scholar 

  22. 22.

    M Burty, L Peeters, E Perrin, S Muenzer, P Colucci, D Salvadori, F. Schadow, JM Valcarcel, J Claes: Rev. Metall., 2005, 102:745-751

    Article  Google Scholar 

  23. 23.

    E. Zinngrebe, J. Small, S.R. van der Laan, and A. Westendorp: Unpubl. Res. Submitted to Met. Mat. Ser. B, 2018 (under review)

  24. 24.

    B Karnasiewicz: Unpubl. Masters Thesis, Univ of Rzeszow, 2017.

  25. 25.

    MD Higgins: American Mineralogist (2000), 85:1105-1116

    Article  Google Scholar 

  26. 26.

    MD Higgins: American Mineralogist (2002), 87:171-175

    Article  Google Scholar 

  27. 27.

    MA van Ende, M Guo, E Zinngrebe, B Blanpain, IH Jung: ISIJ Int. (2013), 53:1974-1982

    Article  Google Scholar 

  28. 28.

    E Zinngrebe, C Van Hoek, H Visser,A Westendorp & IH Jung: ISIJ Int. (2012), 52:52-61

    Article  Google Scholar 

  29. 29.

    L. Zhang, W. Pluschkell, and B.G. Thomas: 85th Steelmaking Conf., 2002, vol. 85, pp. 463–76

  30. 30.

    O. Adaba, P. Kaushik, R. O’Malley, S. Lekakh, L. Von Richards, E. Mantel, and E. Ellis: Iron Steel Technology, 2017, pp. 38–49

  31. 31.

    MD Seo, JW Cho, KC Kim, SH Kim: ISIJ Int. (2014), 54:475-481

    Article  Google Scholar 

  32. 32.

    B McCoy: J. Colloid Interface Sci. (2001), 240:139-149

    Article  Google Scholar 

  33. 33.

    X Deng, C Ji, Y Cui, Z Tian, X Yin, X Shao, Y Yang & A McLean: Ironmaking Steelmaking (2017), 44:739-749

    Article  Google Scholar 

  34. 34.

    R. Dekkers: PhD Thesis, Kath Univ. Leuven, 2002.

  35. 35.

    L Zheng, A Malfliet, P Wollants, B Blanpain, M Guo: ISIJ Int. (2016), 56:926-935

    Article  Google Scholar 

  36. 36.

    Z Deng, B Glaser, MA Bombeck, Du Sichen: Steel Res. Int. (2015), 86:1-10, https://doi.org/10.1002/srin.201500118

    Article  Google Scholar 

  37. 37.

    MA van Ende, MX Guo, E Zinngrebe, R Dekkers, J Proost, B Blanpain, P Wollants: Ironmaking & Steelmaking (2009), 36:201-208

    Article  Google Scholar 

  38. 38.

    A Pack, S Hoernes, M Goebbels, R Bross, A Buhr: Eur. J. of Mineralogy (2005), 17:483-493

    Article  Google Scholar 

Download references


The authors thank Tata Steel for the permission to publish. Many colleagues contributed to the work and observations presented here. We want to thank C van Hoek for help with EDS analyses, F van der Does and E Dogan for material preparation and W Tiekink, J Small, and SR van der Laan for helpful discussions. This work is a part of the graduation thesis of one of the authors (B. K.) performed at Rzeszow University, Poland, in 2017 (Supervisor: W. Bochnowski).

Author information



Corresponding author

Correspondence to Enno Zinngrebe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 13, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karnasiewicz, B., Zinngrebe, E. Observational Study of Clogging Specimens from the Tundish Well Showing Origin and Growth of a Clog in an Al-Killed Ti-Alloyed Steel Cast. Metall Mater Trans B 50, 1704–1717 (2019). https://doi.org/10.1007/s11663-019-01619-8

Download citation