Skip to main content
Log in

Precipitation Mechanism and Reduction of Amount of Primary Carbides During Electroslag Remelting of 8Cr13MoV Stainless Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The precipitation and growth of primary carbides in 8Cr13MoV steel during electroslag remelting (ESR) were studied. The effects of melting rate and fill ratio of ESR on the reduction of primary carbides were clarified. Primary carbides M7C3 precipitated from liquid steel at the final stage of solidification, which is attributed to an enrichment of carbon and chromium in liquid steel. The carbon content in the residual liquid steel was the determining factor for the formation of primary carbides. The growth of primary carbides was affected mainly by the chromium-concentration and temperature-field gradients. An appropriate melting rate facilitated the nucleation and growth of dendrites, which caused dendrite closure and prevented the further enrichment of carbon atoms. Primary carbides were refined and their amount was reduced when using a lower ESR melting rate. The fill ratio can affect the uniformity of the temperature field in the liquid metal pool and heat transfer from the slag pool to the liquid metal pool, and an optimal fill ratio resulted in a minimum mushy zone and less primary carbides. The volume fraction of primary carbides was reduced by 23 pct when the melting rate decreased from 150 to 133 kg/h and the fill ratio increased from 0.23 to 0.33.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References:

  1. K. C. Hwang and S. Lee, H. C. Lee: Mater. Sci. Eng. A, 1998, vol. 254, pp. 296-304.

    Article  Google Scholar 

  2. C.A.C. Imbert and H.J. McQueen: Can. Metall. Quart., 2013, vol. 40, pp. 235-44.

    Article  Google Scholar 

  3. C.B. Shi, Q.T. Zhu, W.T. Yu, H.D. Song and J. Li: J. Mater. Eng. Perform., 2016, vol. 25, pp. 4785-95.

    Article  Google Scholar 

  4. Q.T. Zhu, J. Li, C.B. Shi, W.T. Yu and J.H. Li: Int. J. Mater. Res., 2017, vol. 108, pp. 20-8.

    Article  Google Scholar 

  5. Q. Liu, H. Zhang, Q. Wang, X. Zhou, P.G. Jonsson and K. Nakajima: ISIJ Int., 2012, vol. 12, pp. 2210-19.

    Article  Google Scholar 

  6. W.T. Yu, J. Li, C. B. Shi and Q.T. Zhu: Metals, 2016, vol. 8, pp. 193-208.

    Article  Google Scholar 

  7. X.J. Wu, J.D. Xing, H.G. Fu and X.H. Zhi: Mater. Sci. Eng. A, 2007, vol. 457, pp. 180-85.

    Article  Google Scholar 

  8. K.S. Cho, S.I. Kim, S.S. Park, W.S. Choi, H.K. Moon and H. Kwon: Metall. Mater. Trans. A, 2015, vol. 47A, pp. 26-32.

    Google Scholar 

  9. I. V. Doronin, Y. A. Lukina, I. O. Bannykh and P.L. Alekseev: Russ. Metall., 2011, vol. 1, pp. 29-32.

    Article  Google Scholar 

  10. G. Lvov, V. I. Levit and M. J. Kaufman: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1669-79.

    Article  Google Scholar 

  11. W. H. Jiang, X. D. Yao, H. R. Guan and Z.Q. Hu: J. Mater. Sci., 1999, vol. 12, pp. 2859-64.

    Article  Google Scholar 

  12. E. Lee, W. Park, J. Y. Jung and S. Ahn: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1395-1404.

    Article  Google Scholar 

  13. F.S. Pan, W.Q. Wang, A.T. Tang, L.Z. Wu and T.T. Liu: Prog. Nat. Sci., 2011, vol. 2, pp. 180-86.

    Article  Google Scholar 

  14. Z.B. Li: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, China, 2011, pp. 66.

    Google Scholar 

  15. A. Mitchell and B. Hernandez-morales: Metall. Trans. B, 1990, vol. 21B, pp. 723-31.

    Article  Google Scholar 

  16. K. Fezi, J. Yanke and M. J. M.Krane: Metal. Mater. Trans. B, 2015, vol. 46B, pp. 766-79.

    Article  Google Scholar 

  17. Y. F. Qi, J. Li, C.B. Shi, Y. Zhang, Q.T. Zhu and H. Wang: J. Mater. Process. Technol., 2017, vol. 249, pp. 32-38.

    Article  Google Scholar 

  18. X. Chen, Z. Jiang, F. Liu, J. Yu and K. Chen: Steel. Res. Int., 2017,vol. 88, pp. 186-95.

    Google Scholar 

  19. W.T. Yu, J. Li, C.B. Shi and Q.T. Zhu: Mater. Trans., 2016, vol. 57, pp. 1547-51.

    Article  Google Scholar 

  20. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Ryberon, V. Schmitt, S. Hans and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 271-80.

    Article  Google Scholar 

  21. S. D. Ridder, F. C. Reyes, S. Chakravorty, R. Mehrabian, J.D. Nauman, J.H. Chen and H.J. Klein: Metall. Trans. B, 1978, vol. 9B, pp. 415-25.

    Article  Google Scholar 

  22. Q. Wang and B.K. Li: Appl. Therm. Eng., 2015, vol. 91, pp. 116-25.

    Article  Google Scholar 

  23. K.M. Kelkar, S.V. Patankar, S.K. Srivatsa, R.S. Minisandram, D.G. Evans, J.J. DeBarbadillo, R.H. Smith, R.C. Helmink, A. Mitchell, and H.A. Sizek: Proceedings of the 2013 International Symposium on Liquid Metal Processing & Casting, 2013, pp. 3–12.

  24. A. Mitchell and S. Joshi: Metall. Trans., 1972, vol.3, pp. 2306-07.

    Article  Google Scholar 

  25. Y.W. Dong, Z.H. Jiang, H. Liu, R. Chen and Z.W. Song: ISIJ Int., 2012, vol. 52, pp. 2226-34.

    Article  Google Scholar 

  26. K.C. Mills and B.J.Keene: Int. Mater. Rev., 1981, vol.1, pp. 21-26.

    Article  Google Scholar 

  27. E. Karimi-sibaki, A. Kharicha, J. Bohacek, M. Wu and A. Ludwig: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2049-61.

    Article  Google Scholar 

  28. W.X. Song: Metallography, Metallurgical Industry Press, Beijing, China, 2011, pp. 326.

    Google Scholar 

  29. N. Barnes, S. Clark, S. Seetharamah and P.F. Mendez: Acta. Mater., 2018, vol 151, pp. 356-65.

    Article  Google Scholar 

  30. J.T.H. Pearce: J. Mater. Sci. Lett., 1983, vol. 2, pp. 428-32.

    Article  Google Scholar 

  31. S. Liu, Y.F. Zhou, X.L. Xing, J.B. Wang, Y.L. Yang and Q.X. Yang: Mater. Lett., 2016, vol. 183, pp. 272-76.

    Article  Google Scholar 

  32. G.L.F. Powell and R.A. Carlson: J. Mater. Sci., 1994, vol. 29, pp. 4889-96.

    Article  Google Scholar 

  33. S.A. David and H.D. Brody: Metall. Trans., 1974, vol. 5, pp. 2309-16.

    Article  Google Scholar 

  34. Z.H. Jiang, Y.W. Dong, X. Geng and F.B. Liu: Electroslag Metallurgy, Science Press, Beijing, China, 2015, pp. 243.

    Google Scholar 

  35. F.L. Li, R. Fu, D. Feng, F.J. Yin and Z.L. Tian: Rare. Metal. Mat. Eng., 2016, vol. 45, pp. 1437-42.

    Article  Google Scholar 

  36. X.H. Wang and Y. Li: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 800-12.

    Article  Google Scholar 

  37. A. Mitchell: Perspective in Metallurgical Development Conference, Sheffield, England, 1984, pp. 89–98.

  38. C.B. Shi, D.L. Zheng, S.H. Shin, J. Li and J.W. Cho: Int. J. Min. Met. Mater., 2017, vol. 24, pp. 18-24.

    Article  Google Scholar 

  39. A. Mitchell: Electric Furnace Steelmaking Conference, Warrendale, PA, 1985, p. 212.

Download references

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (Grant Nos. 51574025 and 51504019) and Guangdong YangFan Innovative & Entepreneurial Research Team Program (Grant No. 2016YT03C071).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Li or Cheng-Bin Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 15, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, QT., Li, J., Zhang, J. et al. Precipitation Mechanism and Reduction of Amount of Primary Carbides During Electroslag Remelting of 8Cr13MoV Stainless Steel. Metall Mater Trans B 50, 1365–1377 (2019). https://doi.org/10.1007/s11663-019-01573-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01573-5

Navigation