Metallurgical and Materials Transactions B

, Volume 50, Issue 3, pp 1387–1398 | Cite as

Carbonaceous Material Properties and Their Interactions with Slag During Electric Arc Furnace Steelmaking

  • Xian-Ai HuangEmail author
  • Ka Wing Ng
  • Louis Giroux
  • Marc Duchesne


The state of the interface between slag and carbon determines the slag foaming behavior and thus the effectiveness of carbon in electric arc furnace (EAF) steelmaking. This paper explores the interaction between synthetic slag and carbonaceous materials derived from various sources, including bio-char produced by two different technologies, graphite, coke, and char from tire pyrolysis. Different interfacial phenomena were found between slag and the carbonaceous materials examined. The interactions between bio-char and slag are found to be poor in comparison with other carbonaceous materials. Carbonaceous materials were characterized in terms of their chemical composition and the results obtained suggested that interfacial phenomena were not dominated by ash in the carbonaceous material. The effects of carbon crystalline structure on interaction with slag were evaluated by Raman spectroscopy and X-ray diffraction. Surface properties of the samples were evaluated using scanning electron microscopy, and surface morphology was identified as the principal factor affecting the interaction of slag on carbonaceous particles. The smooth surface of bio-char results in reduced slag foaming. This finding forms the basis for future research on the production of bio-char to be used as a slag foaming agent in EAF steelmaking.



This research has been funded by Natural Resources Canada through the Energy Innovation Program (EIP). The authors would like to thank members of the Canadian Carbonization Research Association (CCRA) for their technical contributions. Assistance with preparing samples for SEM by the laboratory of Professor K. Liu of the University of Quebec at Chicoutimi is greatly appreciated. The authors also appreciate the work of Ms. Ami Patel, a University of Waterloo co-op student, for her valuable assistance with the tensiometer tests.


  1. 1.
    V. Sahajwalla, M. Rahman, L. Hong, N. Saha-Chaudhury, and D. Spencer: AISTech—Iron and Steel Technology Conference Proceedings, 2005, vol. 1, pp. 639–50.Google Scholar
  2. 2.
    R. Corbari, H. Matsuura, S. Halder, M. Walker, and R.J. Fruehan: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2009, vol. 40, pp. 940–8.CrossRefGoogle Scholar
  3. 3.
    J.S. Oh and J. Lee: J. Mater. Sci., 2016, vol. 51, pp. 1813–9.CrossRefGoogle Scholar
  4. 4.
    P. Migas and M. Karbowniczek: Arch. Metall. Mater., 2010, vol. 55, pp. 1147–57.CrossRefGoogle Scholar
  5. 5.
    M. Rahman, V. Sahajwalla, R. Khanna, N. Saha-Chaudhury, D. Knights’, and P. O’Kane: AISTech—Iron and Steel Technology Conference Proceedings, 2006, vol. 1, pp. 491–97.Google Scholar
  6. 6.
    S.L. Teasdale and P.C. Hayes: ISIJ Int., 2005, vol. 45, pp. 634–41.CrossRefGoogle Scholar
  7. 7.
    M. Rahman, R. Khanna, V. Sahajwalla, and P. O'Kane: ISIJ Int., 2009, vol. 49, pp. 329–36.CrossRefGoogle Scholar
  8. 8.
    B. Sarma, A.W. Cramb, and R.J. Fruehan: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 1996, vol. 27, pp. 717–30.CrossRefGoogle Scholar
  9. 9.
    A.S. Mehta and V. Sahajwalla: ISIJ Int., 2003, vol. 43, pp. 1512–8.CrossRefGoogle Scholar
  10. 10.
    N.F.M. Yunos, M. Zaharia, M.A. Idris, D. Nath, R. Khanna, and V. Sahajwalla: Energy Fuels, 2012, vol. 26, pp. 278–86.CrossRefGoogle Scholar
  11. 11.
    M. Zaharia, N.F. Yunos, and V. Sahajwalla: Mater Struct Adv Innov, 2013, vol. 21, p. 7.Google Scholar
  12. 12.
    A. Funke, T. Demus, T. Willms, L. Schenke, T. Echterhof, A. Niebel, H. Pfeifer, and N. Dahmen: Fuel Process. Technol., 2018, vol. 174, pp. 61–8.CrossRefGoogle Scholar
  13. 13.
    A. Kalde, T. Willms, T. Demus, T. Echterhof, and H. Pfeifer: 24th European Biomass Conference and Exhibition, vol. 2016, 2016, pp. 1642–9.Google Scholar
  14. 14.
    T. Meier, T. Hay, T. Echterhof, H. Pfeifer, T. Rekersdrees, L. Schlinge, S. Elsabagh, and H. Schliephake: Steel Res. Int. 1:1–12 (2017). doi:10.1002/srin.201600458.Google Scholar
  15. 15.
    S. Kongkarat, R. Khanna, P. Koshy, P. O’Kane, and V. Sahajwalla: ISIJ Int., 2012, vol. 52, pp. 385–93.CrossRefGoogle Scholar
  16. 16.
    D.-J. Min and R.J. Fruehan: Metall. Trans. B, 1992, vol. 23, pp. 29–37.CrossRefGoogle Scholar
  17. 17.
    J.-D. Seo and S.-H. Kim: Steel Res., 1998, vol. 69, pp. 307–11.CrossRefGoogle Scholar
  18. 18.
    S.R. Story, B. Sarma, R.J. Fruehan, A.W. Cramb, and G.R. Belton: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 1998, vol. 29, pp. 929–32.CrossRefGoogle Scholar
  19. 19.
    J.F. Gransden, J.T. Price, and N.J. Ramey: CANMET Rep. Can. Cent. Miner. Energy Technol Google Scholar
  20. 20.
    A. Bhattacharyya, J. Schenk, G. Arth, H. Stacker, and C. Thaler: AISTech—Iron and Steel Technology Conference Proceedings, 2015, vol. 1, pp. 713–21.Google Scholar
  21. 21.
    S. Kongkarat, B. Cherdhirunkorn, and R. Thongreang: Steel Res. Int. 1:1-12 (2017). doi:10.1002/srin.201600168.Google Scholar
  22. 22.
    S. Maroufi, M. Mayyas, I. Mansuri, P. O’Kane, C. Skidmore, Z. Jin, A. Fontana, and V. Sahajwalla: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2017, vol. 48, pp. 2316–23.CrossRefGoogle Scholar
  23. 23.
    A.S. Mehta and V. Sahajwalla: Scand. J. Metall., 2000, vol. 29, pp. 17–29.CrossRefGoogle Scholar
  24. 24.
    J.R. Dankwah, V. Sahajwalla, P. Koshy, N.M. Saha-Chaudhury, P. O’Kane, C. Skidmore, and D. Knights: AISTech—Iron and Steel Technology Conference Proceedings, 2010, pp. 895–903.Google Scholar
  25. 25.
    T. Demus, T. Reichel, M. Schulten, T. Echterhof, and H. Pfeifer: Ironmak. Steelmak., 2016, vol. 43, pp. 564–70.CrossRefGoogle Scholar
  26. 26.
    M.A. Duchesne and R.W. Hughes: Fuel, 2017, vol. 188, pp. 173–81.CrossRefGoogle Scholar
  27. 27.
    A. Gutiérrez-Pardo, J. Ramírez-Rico, R. Cabezas-Rodríguez, and J. Martínez-Fernández: J. Power Sources, 2015, vol. 278, pp. 18–26.CrossRefGoogle Scholar
  28. 28.
    J. Ramirez-Rico, A. Gutierrez-Pardo, J. Martinez-Fernandez, V.V. Popov, and T.S. Orlova: Mater. Des., 2016, vol. 99, pp. 528–34.CrossRefGoogle Scholar
  29. 29.
    X. Huang, D. Kocaefe, and Y. Kocaefe: Energy Fuels, 2018, vol. 32, pp. 8537–44.CrossRefGoogle Scholar
  30. 30.
    Y. Sasaki and T. SOma: Metall. Trans. B, 1977, vol. 8, pp. 189–90.CrossRefGoogle Scholar
  31. 31.
    K.C. Mills and J.M. Rhine: Fuel, 1989, vol. 68, pp. 193–200.CrossRefGoogle Scholar
  32. 32.
    M.A. Duchesne, A.M. Bronsch, R.W. Hughes, and P.J. Masset: Fuel, 2013, vol. 114, pp. 38–43.CrossRefGoogle Scholar
  33. 33.
    D. Skupien and D.R. Gaskell: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2000, vol. 31, pp. 921–5.CrossRefGoogle Scholar
  34. 34.
    X. Li, J. -i. Hayashi, and C.-Z. Li: Fuel, 2006, vol. 85, pp. 1700–7.CrossRefGoogle Scholar
  35. 35.
    Y. Wang, D.C. Alsmeyer, and R.L. McCreery: Chem. Mater., 1990, vol. 2, pp. 557–63.CrossRefGoogle Scholar
  36. 36.
    S. Dong, P. Alvarez, N. Paterson, D.R. Dugwell, and R. Kandiyoti: Energy Fuels, 2009, vol. 23, pp. 1651–61.CrossRefGoogle Scholar
  37. 37.
    R.N. Wenzel: Ind. Eng. Chem., 1936, vol. 28, pp. 988–94.CrossRefGoogle Scholar
  38. 38.
    K.W. Ng, J.A. MacPhee, L. Giroux, and T. Todoschuk: Fuel Process. Technol., 2011, vol. 92, pp. 801–4.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Xian-Ai Huang
    • 1
    Email author
  • Ka Wing Ng
    • 1
  • Louis Giroux
    • 1
  • Marc Duchesne
    • 1
  1. 1.Natural Resources Canada, CanmetENERGY-OttawaOttawaCanada

Personalised recommendations