Metallurgical and Materials Transactions B

, Volume 50, Issue 3, pp 1193–1203 | Cite as

Correlation of Oxygen and Aluminum Contents of Molten Titanium-Aluminum Alloys in Alumina and Calcia Crucibles

  • Mahdi FarhaniEmail author
  • Gereon Hils
  • Karl-Heinz Spitzer


As a key part of investigating a new proposed Ti-alloy production process, Ti-Al alloys were produced by aluminothermic reduction experiments at 1973 K in Al2O3 crucibles. Besides, pure Ti and Al were melted inside CaO crucibles at 1973 K to investigate the possibility of melt refining in equilibrium with CaO. The experiments were carried out in a vacuum induction furnace under argon gas at atmospheric pressure. The experimental results were proved by thermodynamic evaluations including also literature data. The correlation of oxygen and aluminum in Ti melt with 11 to 23 wt pct Al in contact with Al2O3 was assessed as \( 3\ln X_{\text{O}} = -\,2\ln X_{\text{Al}} - 9.1 \pm 0.4. \) This correlation in Ti melt with 3 to 10 wt pct Al in contact with CaO was \( 3\ln X_{\text{O}} = - \,2\ln X_{\text{Al}} - 14.9 \pm 0.3. \) Partial molar excess Gibbs free energies of mixing and combinations thereof in Ti-rich Ti-Al-O-Ca melt were assessed as \( RT \ln (\gamma_{\text{Al}}^{2} \cdot \gamma_{\text{O}}^{3} ) = - 894 \pm 6\,({\text{kJ}}/{\text{mol}}) \), \( RT \ln \left( {\gamma_{\text{Ca}} \cdot \gamma_{\text{O}} } \right) = - 195 \pm 4\,({\text{kJ}}/{\text{mol}}) \), \( RT \ln \gamma_{\text{O}} = - 258 \pm 6\,({\text{kJ}}/{\text{mol}}) \), \( RT \ln \gamma_{\text{Ca}} = 62 \pm 7\,({\text{kJ}}/{\text{mol}}). \) The activity of Al2O3 in CaO-saturated slag was assessed as 0.003 ± 0.001. The changes of Gibbs free energy for the dissolution of 1 wt pct oxygen and 1 wt pct calcium in Ti-Al melt were estimated as −630 ± 6 and −11 ± 7 (kJ/mol), respectively. A model was developed and applied to calculate the basic data for refining Ti-Al alloy.

Table of Symbols


Element or component ‘i’ in pure solid state


Element ‘i’ in dissolved state in metallic melt

[pct i]

Weight percent (mass pct, wt pct) of element ‘i’ dissolved in metallic melt


Element or component ‘i’ in gaseous state


Component ‘i’ in slag

\( a_{\text{i}} \)

Activity of ‘i’ with respect to Raoultian reference state (pure ‘i’ in its stable state) at 1 atm


Partial molar Gibbs free energy of ‘i’


Molar Gibbs free energy of ‘i’ in its pure state


Standard molar Gibbs free energy of formation of ‘i’


Activity coefficient of ‘i’


Molar mass of ‘i’


Amount of ‘i’ in moles




Partial pressure of ‘i’

\( P_{\text{i}}^{^\circ } \)

Standard vapor pressure of ‘i’


The gas constant




Mole fraction of ‘i’



The support of the German Research Foundation (DFG) within the research group 1372 (Grant No. SP492/5-1) is appreciated.


  1. 1.
    D.R. Armstrong, S.S. Borys, and R.P. Anderson: US5958106, 1999.Google Scholar
  2. 2.
    Chen, G. Z., Fray, D. J., Farthing, T. W.: Nature, 2000, 407, 361–364CrossRefGoogle Scholar
  3. 3.
    F.H. Froes, ed.: Titanium. Physical Metallurgy, Processing, and Applications. ASM International, Materials Park, Ohio, 2015.Google Scholar
  4. 4.
    Mellor, I., Grainger, L., Rao, K., Deane, J., Conti, M., Doughty, G., Vaughan, D.: Titanium powder production via the Metalysis process: In Titanium Powder Metallurgy; Qian, M., Froes, F. H., Eds.; Butterworth-Heinemann: Boston, 2015; 51–67CrossRefGoogle Scholar
  5. 5.
    Ono, K., Suzuki, R. O.: JOM, 2002, 54, 59–61CrossRefGoogle Scholar
  6. 6.
    Kroll, W. J.: Trans. Electrochem. Soc., 1940, 78, 35-47CrossRefGoogle Scholar
  7. 7.
    W.J. Kroll: US2205854, 1940.Google Scholar
  8. 8.
    M. Farhani: Investigation of an Alternative Pyrometallurgical Route for Titanium Production, Ph.D. Thesis, Clausthal University of Technology, Clausthal-Zellerfeld, Germany, 2017.Google Scholar
  9. 9.
    Cui, R., Tang, X., Gao, M., Zhang, H., Gong, S.: Trans. Nonferrous Met. Soc. China, 2012, 22, 887–894CrossRefGoogle Scholar
  10. 10.
    B. Friedrich, J. Morscheiser, and C. Lochbichler: in Refractories of Metallurgy 51st International Colloquium on Refractories 2008, Forschungsgemeinschaft Feuerfest e.V: Bonn, 2008, pp. 229–32.Google Scholar
  11. 11.
    A. Kostov, B. Friedrich: J. Min. Metall. Sect. B, 2005, 41, 113–125CrossRefGoogle Scholar
  12. 12.
    Reitz, J., Lochbichler, C., Friedrich, B.: Intermetallics, 2011, 19, 762–768CrossRefGoogle Scholar
  13. 13.
    Kuang, J. P., Harding, R. A., Campbell, J.: Mater. Sci. Technol., 2000, 16, 1007–1016CrossRefGoogle Scholar
  14. 14.
    Kobayashi, Y., Tsukihashi, F.: Metall. Mater. Trans. B, 1998, 29, 1037–1042CrossRefGoogle Scholar
  15. 15.
    Sakamoto, K., Yoshikawa, K., Kusamichi, T., Onoye, T.: ISIJ Int., 1992, 32, 616–624CrossRefGoogle Scholar
  16. 16.
    T. Degawa, K. Kamata, and Y. Yoneda: in Proceedings of the Sixth World Conference on Titanium, Ti-88, P. Lacombe, R. Tricot, and G. Béranger, eds., Les Editions de Physique: Les Ulis, France, 1989, pp. 707–13.Google Scholar
  17. 17.
    T. Degawa, G. Okuyama, A. Hashimoto, S. Uchida, K. Fujiwara, M. Ebata, T. Satou, and T. Ototani: US4710481, 1987.Google Scholar
  18. 18.
    G.W. Fletcher: US4169722, 1979.Google Scholar
  19. 19.
    Maeda, M., Yahata, T., Mitugi, K., Ikeda, T.: Mater. Trans. JIM, 1993, 34, 599–603CrossRefGoogle Scholar
  20. 20.
    Friedrich, B., Hammerschmidt, J., Stoephasius, J.-C.: Erzmetall, 2003, 56, 82–93Google Scholar
  21. 21.
    J.-C. Stoephasius and B. Friedrich: in European Metallurgical Conference, EMC 2005, GDMB, ed., GDMB-Medienverlag, Clausthal-Zellerfeld, 2005, pp. 1429–44.Google Scholar
  22. 22.
    S. Hassan-Pour, B. Friedrich, A. Ryabtsev, and A. Troyansky: in Titanium Europe 2013, Hamburg, 2013.Google Scholar
  23. 23.
    J.-C. Stoephasius, B. Friedrich, and J. Hammerschmidt: in Proceedings of the 10th World Conference on Titanium, Ti-2003, G. Lütjering and J. Albrecht, eds., Wiley-VCH, Weinheim, 2004, pp. 2209–16.Google Scholar
  24. 24.
    Hammerschmidt, J.: Entwicklung einer Prozessroute zur Herstellung von γ-TiAl-Legierungen durch Aluminothermie und Schutzgas-Elektroschlackeumschmelzen, Ph.D. thesis; RWTH Aachen, Aachen, Germany, 2003.Google Scholar
  25. 25.
    Yahata, T., Ikeda, T., Maeda, M.: Metall. Trans. B, 1993, 24, 599–604CrossRefGoogle Scholar
  26. 26.
    Tsukihashi, F., Tawara, E., Hatta, T.: Metall. Mater. Trans. B, 1996, 27, 967–972CrossRefGoogle Scholar
  27. 27.
    Kubaschewski, O., Alcock, C. B.: Metallurgical thermochemistry, 5th ed.; Pergamon Press: Oxford, 1979Google Scholar
  28. 28.
    Barin, I.: Thermochemical data of pure substances, 3rd. ed.; VCH: Weinheim, Basel, 1995CrossRefGoogle Scholar
  29. 29.
    Hino, M., Shin’ichiro, K., Ito, H., Banya, S.: CAMP-ISIJ, 1994, 7, 41Google Scholar
  30. 30.
    Cho, S.-W., Suito, H.: ISIJ Int., 1994, 34, 177–185CrossRefGoogle Scholar
  31. 31.
    Allibert, M., Chatillon, C., Jacob, K. T., Lourtau, R.: J. Am. Ceram. Soc., 1981, 64, 307–314CrossRefGoogle Scholar
  32. 32.
    Kobayashi, Y., Tsukihashi, F.: Metall. Mater. Trans. B, 1997, 28, 956–959CrossRefGoogle Scholar
  33. 33.
    Shibata, T., Demukai, N.: Denki Seiko, 1993, 64, 32–39CrossRefGoogle Scholar
  34. 34.
    Maeda, M., Kiwake, T., Shibuya, K., Ikeda, T.: Mater. Sci. Eng. A, 1997, 239-240, 276–280CrossRefGoogle Scholar
  35. 35.
    Hampl, M., Schmid-Fetzer, R.: J. Mater. Sci., 2015, 50, 5822–5832CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Mahdi Farhani
    • 1
    Email author
  • Gereon Hils
    • 1
  • Karl-Heinz Spitzer
    • 1
  1. 1.Institute of MetallurgyClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations