Production of Rounded Reactive Composite Ti/Al Powders for Selective Laser Melting by High-Energy Ball Milling


The effect of different regimes of high-energy ball milling (HEBM) on the morphology of reactive Ti–Al powders was studied. It is shown that a “soft” regime of mechanical treatment can be readily used to prepare spheroidal reactive Ti–Al powders with the flow ability suitable for selective laser melting applications. Size distribution of milled powders was found to depend on the diameter of milling balls. Milled powders showed good flow ability of 61.7 and 81.25 s for 2-mm and 6-mm balls, respectively. Combustion reaction in the compacts prepared from milled powders got started at temperatures close to the melting point of Al, and due to the thermal effect of reaction, the temperature jump made a value of about 500°C. The combustion product—Ti–TiAl3 composite—can be recommended for use as a high-temperature structural material.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1.

    X. Ren, H. Shao, T. Lin, and H. Zheng: Mater. Des., 2016, vol.101, pp. 80-87.

    Article  Google Scholar 

  2. 2.

    A. Levy, A. Miriyev, A. Elliott, S.S. Babu, and N. Frage: Mater. Des., 2017, vol. 118, pp. 198-203.

    Article  Google Scholar 

  3. 3.

    R. Liu, Z. Wang, T. Sparks, F. Liou, and J. Newkirk: in Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, 2017, pp. 351-71.

  4. 4.

    S.F.S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H.S.C. Metselaar, N. Adib Kadri, and N.A.A. Osman: Sci. Technol. Adv. Mater., 2015, 16 033502.

  5. 5.

    F. Mangano, M. Bazzoli, L. Tettamanti, D. Farronato, M. Maineri, A. Macchi, and C. Mangano: Lasers Med. Sci., 2013, vol. 28, pp. 1241-47.

    Article  Google Scholar 

  6. 6.

    P.H. Warnke, H. Seitz, F. Warnke, S.T. Becker, S. Sivananthan, E. Sherry, Q. Liu, J. Wiltfang, and T. Douglas: J. Biomed. Mater. Res. - Part B Appl. Biomater., 2010, vol. 93B, pp. 212-17.

  7. 7.

    S. Hoeges, A. Zwiren, and C. Schade: Met. Powder Rep., 2017, vol. 72, pp. 11-117.

    Article  Google Scholar 

  8. 8.

    C.C. Yang, J.L. Hang Chau, C.J. Weng, C.S. Chen, and Y.H. Chou: Mater. Chem. Phys., 2017, vol.202, pp. 151-58.

  9. 9.

    Y.Y. Kaplanskii, A.A. Zaitsev, Z.A. Sentyurina, E.A. Levashov, Y.S. Pogozhev, P.A. Loginov, and I.A. Logachev: J. Mater. Res. Technol., 2018, vol. 7, pp. 461-68.

    Article  Google Scholar 

  10. 10.

    G. Chen, S.Y. Zhao, P. Tan, J. Wang, C.S. Xiang, and H.P. Tang: Powder Technol., 2018, vol. 333, pp. 38-46.

    Article  Google Scholar 

  11. 11.

    V.N. Korzhyk, L.D. Kulak, V.E. Shevchenko, V.V. Kvasnitskiy, N.N. Kuzmenko, X. Liu, Y.X. Cai, L. Wang, H.W. Xie, and L.M. Zou: Mater. Sci. Forum, 2017, vol. 898, pp. 1485-97.

    Article  Google Scholar 

  12. 12.

    F. Gao and H.M. Wang: Intermetallics, 2008, vol. 16, pp. 202–08.

    Article  Google Scholar 

  13. 13.

    L.X. Dong and H.M. Wang: J. Alloys Compd., 2008, vol. 465, pp. 83–89.

    Article  Google Scholar 

  14. 14.

    D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Surf. Coatings Technol., 2011, vol. 205, pp. 3285-92.

    Article  Google Scholar 

  15. 15.

    D. Gu and W. Meiners: Mater. Sci. Eng. A, vol. 527, pp. 7585-92.

  16. 16.

    Merzhanov A.G., Pis’menskaya E.B., Ponomarev V.I.: Dokl. Phys. Chem., 1998, vol. 363, p. 203-07.

  17. 17.

    N.F. Shkodich, N.A. Kochetov, A.S. Rogachev, D.Y. Kovalev, and N. V Sachkova: Russ. J. Non-Ferrous Met., 2006, vol. 5, pp. 44–50.

    Google Scholar 

  18. 18.

    N.F. Shkodich, N.A. Kochetov, A.S. Rogachev, A.E. Grigoryan, M.R. Sharafutdinov, and B.P. Tolochko: Bull. Russ. Acad. Sci. Phys., 2007, vol. 71, pp. 650–52.

    Article  Google Scholar 

  19. 19.

    Y.S. Itin, V.I. and Naiborodenko: Vysokotemperaturnyi Sintez Intermetallicheskikh Soedinenii (High-Temperature Synthesis of Intermetallic Compounds), Izd. Tomsk. Univ., Tomsk, 1989, p. 214.

  20. 20.

    N.F. Shkodich, N.A. Kochetov, A.S. Rogachev, A.E. Grigoryan, M.R. Sharafutdinov, and B.P. Tolochko: Bull. Russ. Acad. Sci. Phys., 2007, vol. 71, pp. 650-52.

    Article  Google Scholar 

  21. 21.

    C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1-184.

    Article  Google Scholar 

  22. 22.

    E. Medda, F. Delogu, and G. Cao: Mater. Sci. Eng. A, 2003, vol. 361, pp. 23-28.

    Article  Google Scholar 

  23. 23.

    A.S. Rogachev, N.F. Shkodich, S.G. Vadchenko, F. Baras, D.Y. Kovalev, S. Rouvimov, A.A. Nepapushev, and A.S. Mukasyan: J. Alloys Compd., 2013, vol. 577, pp. 600–05.

    Article  Google Scholar 

  24. 24.

    H.C. Yi, A. Petric, and J.J. Moore: J. Mater. Sci., 1992, vol. 27, pp. 6797-6806.

    Article  Google Scholar 

  25. 25.

    N. Bertolino, M. Monagheddu, A. Tacca, P. Giuliani, C. Zanotti, and U. Anselmi Tamburini: Intermetallics, 2003, vol. 11, pp. 41-49.

    Article  Google Scholar 

Download references


This work was supported by the Russian Ministry for Science and Higher Education in the framework of the Federal Target Program “Research and Development on Priority Directions of the Scientific and Production Complex of Russia for 2014–2020”, Agreement No. 14.587.21.0051, Project RFMEFI58718X0051.

Author information



Corresponding author

Correspondence to A. A. Nepapushev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 12 April, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nepapushev, A.A., Moskovskikh, D.O., Buinevich, V.S. et al. Production of Rounded Reactive Composite Ti/Al Powders for Selective Laser Melting by High-Energy Ball Milling. Metall Mater Trans B 50, 1241–1247 (2019).

Download citation