Metallurgical and Materials Transactions B

, Volume 50, Issue 3, pp 1241–1247 | Cite as

Production of Rounded Reactive Composite Ti/Al Powders for Selective Laser Melting by High-Energy Ball Milling

  • A. A. NepapushevEmail author
  • D. O. Moskovskikh
  • V. S. Buinevich
  • S. G. Vadchenko
  • A. S. Rogachev


The effect of different regimes of high-energy ball milling (HEBM) on the morphology of reactive Ti–Al powders was studied. It is shown that a “soft” regime of mechanical treatment can be readily used to prepare spheroidal reactive Ti–Al powders with the flow ability suitable for selective laser melting applications. Size distribution of milled powders was found to depend on the diameter of milling balls. Milled powders showed good flow ability of 61.7 and 81.25 s for 2-mm and 6-mm balls, respectively. Combustion reaction in the compacts prepared from milled powders got started at temperatures close to the melting point of Al, and due to the thermal effect of reaction, the temperature jump made a value of about 500°C. The combustion product—Ti–TiAl3 composite—can be recommended for use as a high-temperature structural material.



This work was supported by the Russian Ministry for Science and Higher Education in the framework of the Federal Target Program “Research and Development on Priority Directions of the Scientific and Production Complex of Russia for 2014–2020”, Agreement No. 14.587.21.0051, Project RFMEFI58718X0051.


  1. 1.
    X. Ren, H. Shao, T. Lin, and H. Zheng: Mater. Des., 2016, vol.101, pp. 80-87.CrossRefGoogle Scholar
  2. 2.
    A. Levy, A. Miriyev, A. Elliott, S.S. Babu, and N. Frage: Mater. Des., 2017, vol. 118, pp. 198-203.CrossRefGoogle Scholar
  3. 3.
    R. Liu, Z. Wang, T. Sparks, F. Liou, and J. Newkirk: in Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, 2017, pp. 351-71.Google Scholar
  4. 4.
    S.F.S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H.S.C. Metselaar, N. Adib Kadri, and N.A.A. Osman: Sci. Technol. Adv. Mater., 2015, 16 033502.Google Scholar
  5. 5.
    F. Mangano, M. Bazzoli, L. Tettamanti, D. Farronato, M. Maineri, A. Macchi, and C. Mangano: Lasers Med. Sci., 2013, vol. 28, pp. 1241-47.CrossRefGoogle Scholar
  6. 6.
    P.H. Warnke, H. Seitz, F. Warnke, S.T. Becker, S. Sivananthan, E. Sherry, Q. Liu, J. Wiltfang, and T. Douglas: J. Biomed. Mater. Res. - Part B Appl. Biomater., 2010, vol. 93B, pp. 212-17.Google Scholar
  7. 7.
    S. Hoeges, A. Zwiren, and C. Schade: Met. Powder Rep., 2017, vol. 72, pp. 11-117.CrossRefGoogle Scholar
  8. 8.
    C.C. Yang, J.L. Hang Chau, C.J. Weng, C.S. Chen, and Y.H. Chou: Mater. Chem. Phys., 2017, vol.202, pp. 151-58.Google Scholar
  9. 9.
    Y.Y. Kaplanskii, A.A. Zaitsev, Z.A. Sentyurina, E.A. Levashov, Y.S. Pogozhev, P.A. Loginov, and I.A. Logachev: J. Mater. Res. Technol., 2018, vol. 7, pp. 461-68.CrossRefGoogle Scholar
  10. 10.
    G. Chen, S.Y. Zhao, P. Tan, J. Wang, C.S. Xiang, and H.P. Tang: Powder Technol., 2018, vol. 333, pp. 38-46.CrossRefGoogle Scholar
  11. 11.
    V.N. Korzhyk, L.D. Kulak, V.E. Shevchenko, V.V. Kvasnitskiy, N.N. Kuzmenko, X. Liu, Y.X. Cai, L. Wang, H.W. Xie, and L.M. Zou: Mater. Sci. Forum, 2017, vol. 898, pp. 1485-97.CrossRefGoogle Scholar
  12. 12.
    F. Gao and H.M. Wang: Intermetallics, 2008, vol. 16, pp. 202–08.CrossRefGoogle Scholar
  13. 13.
    L.X. Dong and H.M. Wang: J. Alloys Compd., 2008, vol. 465, pp. 83–89.CrossRefGoogle Scholar
  14. 14.
    D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Surf. Coatings Technol., 2011, vol. 205, pp. 3285-92.CrossRefGoogle Scholar
  15. 15.
    D. Gu and W. Meiners: Mater. Sci. Eng. A, vol. 527, pp. 7585-92.Google Scholar
  16. 16.
    Merzhanov A.G., Pis’menskaya E.B., Ponomarev V.I.: Dokl. Phys. Chem., 1998, vol. 363, p. 203-07.Google Scholar
  17. 17.
    N.F. Shkodich, N.A. Kochetov, A.S. Rogachev, D.Y. Kovalev, and N. V Sachkova: Russ. J. Non-Ferrous Met., 2006, vol. 5, pp. 44–50.Google Scholar
  18. 18.
    N.F. Shkodich, N.A. Kochetov, A.S. Rogachev, A.E. Grigoryan, M.R. Sharafutdinov, and B.P. Tolochko: Bull. Russ. Acad. Sci. Phys., 2007, vol. 71, pp. 650–52.CrossRefGoogle Scholar
  19. 19.
    Y.S. Itin, V.I. and Naiborodenko: Vysokotemperaturnyi Sintez Intermetallicheskikh Soedinenii (High-Temperature Synthesis of Intermetallic Compounds), Izd. Tomsk. Univ., Tomsk, 1989, p. 214.Google Scholar
  20. 20.
    N.F. Shkodich, N.A. Kochetov, A.S. Rogachev, A.E. Grigoryan, M.R. Sharafutdinov, and B.P. Tolochko: Bull. Russ. Acad. Sci. Phys., 2007, vol. 71, pp. 650-52.CrossRefGoogle Scholar
  21. 21.
    C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1-184.CrossRefGoogle Scholar
  22. 22.
    E. Medda, F. Delogu, and G. Cao: Mater. Sci. Eng. A, 2003, vol. 361, pp. 23-28.CrossRefGoogle Scholar
  23. 23.
    A.S. Rogachev, N.F. Shkodich, S.G. Vadchenko, F. Baras, D.Y. Kovalev, S. Rouvimov, A.A. Nepapushev, and A.S. Mukasyan: J. Alloys Compd., 2013, vol. 577, pp. 600–05.CrossRefGoogle Scholar
  24. 24.
    H.C. Yi, A. Petric, and J.J. Moore: J. Mater. Sci., 1992, vol. 27, pp. 6797-6806.CrossRefGoogle Scholar
  25. 25.
    N. Bertolino, M. Monagheddu, A. Tacca, P. Giuliani, C. Zanotti, and U. Anselmi Tamburini: Intermetallics, 2003, vol. 11, pp. 41-49.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • A. A. Nepapushev
    • 1
    Email author
  • D. O. Moskovskikh
    • 1
  • V. S. Buinevich
    • 1
  • S. G. Vadchenko
    • 2
  • A. S. Rogachev
    • 2
  1. 1.Center of Functional NanoceramicsNational University of Science and Technology MISiSMoscowRussia
  2. 2.Merzhanov Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations