Skip to main content
Log in

Formation Mechanism and Nucleation Effect of Ti2O3–TiN Complex Nucleus at Solidification Front of 18Cr Ferritic Stainless Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Formation mechanism of Ti2O3–TiN complex nucleus and its nucleation effect on δ-Fe at solidification front of Fe-18Cr ferritic stainless steel was investigated through experimental and theoretical methods. According to the equilibrium calculation, Ti2O3 will crystallize in the molten steel before solidification and TiN will not form until the solid phases appear. However, complex nucleus and equiaxed grains exist in the edge of Ti-bearing ingot, where the solidification velocity and temperature gradient are high. Therefore, complex nucleus is indicated to be formed at solidification front and a non-equilibrium solidification model for multi-component alloy was established to investigate the dendrite tip interface phenomenon. The calculation results exhibit an element enrichment at solidification front and explain well with the formation of complex nucleus before solidification. It is also found that there is approximate lattice matching between TiN, and Ti2O3, δ-Fe on the basis of disregistry theory. These results are consistent with the observed complex nucleus and the increased equiaxed zone ratio (EZR) of Ti-bearing ferritic stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. X.F. Shi, G.G. Cheng, P. Zhao: J. Univ. Sci. Technol. B., 2010, vol. 32, pp. 1277-81.

    Google Scholar 

  2. Y. Shan, X. Luo, X. Hu, S. Liu: J. Mater. Sci. Tech., 2011, vol. 27, pp. 352-58.

    Article  Google Scholar 

  3. H. Tomari, K. Fujiwara, K. Shimogori, T. Fukuzuka, M. Kanda: Corros., 1982, vol. 38, pp. 283-94.

    Article  Google Scholar 

  4. H. Abo, Y. Hosoi: Corros. Eng., 1979, vol. 28, pp. 584-94.

    Article  Google Scholar 

  5. T. Shibata: Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 785-88.

    Article  Google Scholar 

  6. J.K. Kim, Y.H. Kim, J.S. Lee, K.Y. Kim: Corros. Sci., 2010, vol. 52, pp. 1847-52.

    Article  Google Scholar 

  7. J.K. Kim, Y.H. Kim, S.H. Uhm, J.S. Lee, K.Y. Kim: Corros. Sci., 2009, vol. 51, pp. 2716-23.

    Article  Google Scholar 

  8. J.K. Kim, B. Lee, B.H. Lee, Y.H. Kim, K.Y. Kim: Scripta Mater., 2009, vol. 61, pp. 1133-36.

    Article  Google Scholar 

  9. J.D. Fritz, I.A. Franson: Mater. Sel. Des., 1997, vol. 36, pp. 57-61.

    Google Scholar 

  10. K. Suzuki, S. Asami and K. Suzuki: Tetsu-to-Hagane, 1977, vol. 63, pp. 855-64.

    Article  Google Scholar 

  11. E. Pouillard, B. Osdoit: Rev. Metall., 1966, vol. 63, pp. 679-90.

    Article  Google Scholar 

  12. R.N. Wright: Metall. Trans., 1972, vol. 3, pp. 83-91.

    Article  Google Scholar 

  13. H. Chao: Metall. Trans., 1973, vol. 4, pp. 1183-86.

    Article  Google Scholar 

  14. M.Y. Huh, O. Engler: Mater. Sci. Eng. A, 2001, vol. 308, pp. 74-87.

    Article  Google Scholar 

  15. H. Shin, J. An, S. Park, D. Lee: Acta Mater., 2003, vol. 51, pp. 4693-706.

    Article  Google Scholar 

  16. O. Engler, M.-Y. Huh, C.N. Tome: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3127-39.

    Article  Google Scholar 

  17. H.J. Bong, F. Barlat, M.G. Lee, D.C. Ahn: Int. J. Mech. Sci., 2012, vol. 64, pp. 1-10.

    Article  Google Scholar 

  18. X. Ma, J. Zhao, W. Du, X. Zhang and Z. Jiang, Mater. Charact., 2018, vol. 137, pp. 201-11.

    Article  Google Scholar 

  19. Y. Bai, T. He and Y. Liu, Mater. Charact., 2018, vol. 137, pp. 142-50.

    Article  Google Scholar 

  20. C.-z. Lu, Z. Fang and J.-y. Li, Mater. Charact., 2018, vol. 135, pp. 257-64.

    Article  Google Scholar 

  21. K. Kawahara: J. Japan Inst. Metals, 1974, vol. 38, pp. 440-446.

    Article  Google Scholar 

  22. Y. Itoh, T. Okajima, K. Tashiro: Tetsu-to-Hagane, 1980, vol. 66, pp. 1093-1102.

    Article  Google Scholar 

  23. H. Takeuchi, H. Mori, Y. Ikehara, T. Komano, T. Yanai: Tetsu-to-Hagane, 1980, vol. 66, pp. 638-46.

    Article  Google Scholar 

  24. Y. Itoh, S. Takao, T. Okajima and K. Tashiro: Tetsu-to-Hagane, 1980, vol. 66, pp. 710-16.

    Article  Google Scholar 

  25. Itoh, T. Okajima, H. Maede and K. Tashiro: Tetsu-to-Hagane, 1981, vol. 67, pp. 946-53.

    Article  Google Scholar 

  26. N. Tsuji, K. Tsuzaki, T. Maki: ISIJ Int., 1993, vol. 33, pp. 783-92.

    Article  Google Scholar 

  27. S. Park, K. Kim, Y. Lee, C. Park: ISIJ Int., 2002, vol. 42, pp.100-05.

    Article  Google Scholar 

  28. J. Hamada, Y. Matsumoto, F. Fudanoki, S. Maeda: ISIJ Int., 2003, vol. 43, pp. 1989-98.

    Article  Google Scholar 

  29. C. Shi, G. Cheng, Z. Li, P. Zhao: J. Iron Steel Res. Int., 2008, vol. 15, pp. 57-60.

    Article  Google Scholar 

  30. J.H. Park: Calphad, 2011, vol. 35, pp. 455-62.

    Article  Google Scholar 

  31. A. Ito, H. Suito, R. Inoue: ISIJ Int., 2012, vol. 52, pp. 1196-205.

    Article  Google Scholar 

  32. J.C. Kim, J.J. Kim, J.Y. Choi, J.H. Choi, S.K. Kim: La Metall. Ital., 2009, vol. 101, pp. 43-48.

    Google Scholar 

  33. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987-95.

    Article  Google Scholar 

  34. C. Shi: Univ. Sci. Technol. B., Beijing, Master Thesis, 2004.

  35. H. Fujimura, S. Tsuge, Y. Komizo and T. Nishizawa: Tetsu-to-Hagane, 2001, vol. 87, pp. 707-12.

    Article  Google Scholar 

  36. S. Fukumoto, K. Kimura, A. Takahashi: Tetsu-to-Hagane, 2012, vol. 98, pp. 351-57.

    Article  Google Scholar 

  37. K. Kimura, S. Fukumoto, G. Shigesato, A. Takahashi: ISIJ Int., 2013, vol. 53, pp. 2167-75.

    Article  Google Scholar 

  38. X. Shi, G. Cheng, P. Zhao: J. Univ. Sci. Technol. B., 2010, vol. 32, pp. 1277-81.

    Google Scholar 

  39. X. Shi: Univ. Sci. Technol. B., Beijing, Doctoral Thesis, 2010.

  40. H. Inoue, T. Koseki: Acta Mater., 2017, vol. 124, pp. 430-36.

    Article  Google Scholar 

  41. J. Y. Kim, N. R. Oh, Y. H. Oh, Y. T. Cho, W. B. Lee, S. K. Kim and H. U. Hong, Mater. Charact., 2017, vol. 132, pp. 348-53.

    Article  Google Scholar 

  42. J. Fu, W. Qiu, Q. Nie and Y. Wu, J. Alloys Compd., 2017, vol. 699, pp. 938-46.

    Article  Google Scholar 

  43. J. S. Park, D. H. Kim and J. H. Park, J. Alloys Compd., 2017, vol. 695, pp. 476-81.

    Article  Google Scholar 

  44. M. Gäumann, R. Trivedi, W. Kurz: Mater. Sci. Eng. A, 1997, vol. 226–28, pp. 763–69.

    Article  Google Scholar 

  45. R. Trivedi, W. Kurz: Acta Metall., 1986, vol. 34, pp. 823–30.

    Article  Google Scholar 

  46. Y. Hou, S. Li and G. Cheng, Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5445-57.

    Article  Google Scholar 

  47. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, 1974.

    Book  Google Scholar 

  48. W. Kurz, D.J. Fisher: Fundamentals of Solidification, Trans. Tech. Publications, Switzerland, 1998.

    Book  Google Scholar 

  49. J. S. Park and J. H. Park, Steel Res. Int., 2014, vol. 85, pp. 1303-09.

    Article  Google Scholar 

  50. S. K. Kim, H. Suito and R. Inoue, ISIJ Int., 2012, vol. 52, pp. 1935-44.

    Article  Google Scholar 

  51. C. Ma and G. R. Rossman, Am. Mineral., 2009, vol. 94, pp. 841-44.

    Article  Google Scholar 

  52. Y. Chen and J. Mao, J. Mater. SCI.-Mater. El., 2014, vol. 25, pp. 1284-88.

    Article  Google Scholar 

  53. W. Spengler, R. Kaiser, A. N. Christensen and G. Müller-Vogt, Phys. Rev. B, 1978, vol. 17, pp. 1095-101.

    Article  Google Scholar 

  54. J. H. Park, Metall. Mater. Trans. B, 2013, vol. 44B, pp. 938-47.

    Article  Google Scholar 

  55. P. Fan and W. D. Cho, Metall. Mater. Trans. B, 2007, vol. 38B, pp. 713-17.

    Article  Google Scholar 

  56. H. Sakai and H. Suito, ISIJ Int., 1996, vol. 36, pp. 143-9.

    Article  Google Scholar 

  57. K. Nomura, B. Ozturk and R. J. Fruehan, Metall. Mater. Trans. B, 1991, vol. 22B, pp. 783-90.

    Article  Google Scholar 

  58. S.-W. Cho and H. Suito, Metall. Mater. Trans. B, 1994, vol. 25B, pp. 5-13.

    Article  Google Scholar 

  59. J.C. Villafuerte, H.W. Kerr, S.A. David: Mater. Sci. Eng. A, 1995, vol. 194, pp. 187-91.

    Article  Google Scholar 

  60. G. V. Pervushin and H. Suito, ISIJ Int., 2001, vol. 41, pp. 748-56.

    Article  Google Scholar 

  61. G. H. Gulliver, J. Inst. Met, 1913, vol. 9, pp. 120-57.

    Google Scholar 

  62. E. Scheil, Zeitschrift für Metallkunde, 1942, vol. 34, pp. 70-2.

    Google Scholar 

  63. H. Goto, K. Miyazawa, W. Yamada and K. Tanaka, ISIJ Int., 1995, vol. 35, pp. 708-14.

    Article  Google Scholar 

  64. J. S. Park, C. Lee, J.H. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp.1550-64.

    Article  Google Scholar 

  65. N. Pan, B. Song, Q. Zhai, B. Wen: J. Univ. Sci. Technol. B., 2010, vol. 32, pp. 179-82.

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China [Project Grant No. 51374020].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoguang Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 23, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Cheng, G. Formation Mechanism and Nucleation Effect of Ti2O3–TiN Complex Nucleus at Solidification Front of 18Cr Ferritic Stainless Steel. Metall Mater Trans B 50, 1351–1364 (2019). https://doi.org/10.1007/s11663-019-01540-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01540-0

Navigation