Skip to main content
Log in

Fluid Flow, Thermal Stratification, and Inclusion Motion During Holding Period in Steel Ladles

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the current study, the fluid flow and thermal stratification during the holding period are numerically simulated. The standard k–ε two-equation turbulence model is adopted to describe the turbulence. The trajectories of inclusions are calculated by the discrete phase model (DPM) considering the stochastic effect of turbulence. Two different initial conditions for the flow field are compared: the quiescent state of flow and the fluid flow induced by gas stirring. Significant differences are observed between these cases. In practice, the holding period starts from the shut-off of the gas blowing. Thus, it is proposed that the flow field at the terminal of gas stirring should be considered for the simulation of the fluid flow, heat transfer, and inclusion motion during the holding period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

References

  1. O.J. Ilegbusi and J. Szekely: Trans. Iron Steel Inst. Jpn, 1987, vol. 27, pp. 563-69.

    Article  Google Scholar 

  2. P.R. Austin, J.M. Camplin, J. Herbertson and I.J. Taggart: ISIJ Int., 1992, vol. 32, pp. 196-202.

    Article  Google Scholar 

  3. S. Chakraborty and Y. Sahai: Metall. Mater. Trans. B, 1992, vol. 23, pp. 135-51.

    Article  Google Scholar 

  4. C.E. Grip, L. Jonsson, P. Jonsson and K.O. Jonsson: ISIJ Int., 1996, vol. 36, pp. S211-S14.

    Article  Google Scholar 

  5. C.E. Grip, L. Jonsson, P. Jonsson and K.O. Jonsson: ISIJ Int., 1999, vol. 39, pp. 715-21.

    Article  Google Scholar 

  6. B. Olika, Y. Pan, B. Björkman and C.E. Grip: Scand. J. Metall., 1996, vol. 25, pp. 18-26.

    Google Scholar 

  7. Y. Pan and B. Bjorkman: ISIJ Int., 2002, vol. 42, pp. 614-23.

    Article  Google Scholar 

  8. Y. Pan and B. Bjorkman: ISIJ Int., 2002, vol. 42, pp. 53-62.

    Article  Google Scholar 

  9. Y. Pan, C.E. Grip and B. Bo: Scand. J. Metall., 2003, vol. 32, pp. 71–85.

    Article  Google Scholar 

  10. J.L. Xia and T. Ahokainen: Metall. Mater. Trans. B, 2001, vol. 32, pp. 733-41.

    Article  Google Scholar 

  11. J.L. Xia and T. Ahokainen: Can. Metall. Quart., 2001, vol. 40, pp. 479-87.

    Article  Google Scholar 

  12. M. Söder, P. Jönsson and L. Jonsson: Steel Res. Int., 2004, vol. 75, pp. 128-38.

    Article  Google Scholar 

  13. L.T. Wang, Q.Y. Zhang, S.H. Peng and Z.B. Li: ISIJ Int., 2005, vol. 45, pp. 331-37.

    Article  Google Scholar 

  14. J.-P. Bellot, V. De Felice, B. Dussoubs, A. Jardy and S. Hans: Metall. Mater. Trans. B, 2014, vol. 45, pp. 13-21.

    Article  Google Scholar 

  15. W. Lou and M. Zhu: Metall. Mater. Trans. B, 2013, vol. 44, pp. 762-82.

    Article  Google Scholar 

  16. W. Lou and M. Zhu: ISIJ Int., 2014, vol. 54, pp. 9-18.

    Article  Google Scholar 

  17. S. Joo, J.W. Han and R.I.L. Guthrie: Metall. Trans. B, 1993, vol. 24, pp. 767-77.

    Article  Google Scholar 

  18. L. Zhang, S. Taniguchi and K. Cai: Metall. Mater. Trans. B, 2000, vol. 31, pp. 253-66.

    Article  Google Scholar 

  19. A. Rückert, M. Warzecha, R. Koitzsch, M. Pawlik and H. Pfeifer: Steel Res. Int., 2009, vol. 80, pp. 568-74.

    Google Scholar 

  20. H. Duan, Y. Ren and L. Zhang: JOM, 2018, vol. 70, pp. 2128–38.

    Article  Google Scholar 

  21. H. Duan, L. Zhang, B.G. Thomas and A.N. Conejo: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2722–43.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Key R&D Program of China (2017YFB0304000&2017YFB0304001), National Science Foundation China (Grant No. 51725402), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality steel Consortium (HQSC) and Green Process Metallurgy and Modeling (GPM2) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ren or Lifeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 18, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Ren, Y. & Zhang, L. Fluid Flow, Thermal Stratification, and Inclusion Motion During Holding Period in Steel Ladles. Metall Mater Trans B 50, 1476–1489 (2019). https://doi.org/10.1007/s11663-019-01535-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01535-x

Navigation