Skip to main content
Log in

Influence of Obstruction at Gas-Injection Nozzles (Number and Position) in RH Degasser Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

One of the main problems that affects Ruhrstahl-Heraeus (RH) degasser circulation rate is the obstruction of the gas-injection nozzles. This study aims to elucidate the effects of obstructions in quantity and location using a physical model that depicts 16 injection nozzles on the up-leg distributed symmetrically in 2 rings (8 nozzles/ring). We simulated six, symmetric and nonsymmetric, obstruction conditions to gas flow. The gas-flow rate was varied from 30 to 130 NL/min. The results for symmetric obstructions when the gas-flow rate is kept constant, indicates that the circulation rate in the equipment does not significantly change. However, when these obstructions are non-symmetric, the circulation rate varies drastically, even when the gas-flow rate is kept constant. The analysis of the experimental data generated from this study allowed to determine an equation for the circulation rate that takes into consideration the number and distribution of blocked nozzles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

RH:

Ruhrstahl-Heraeus Degasser

\( \beta \) :

scale factor between model and industrial equipment

\( Q_{\text{m}} \) :

cold model flow rate

\( Q_{\text{e}} \) :

industrial equipment flow rate

\( F_{ \exp } \) :

expansion gas coefficient

A :

area under first peak of the curve (Figure 2)

∆C:

increment in tracer concentration after stabilization (Figure 2)

\( Q \) :

circulation flow rate

\( G \) :

injected gas-flow rate

\( a\, b\, e m \) :

constants to the Eq. [3]

\( \psi \) :

deviation function between the centroid of the polygon formed by the unclogged nozzles and the center of the up-leg

\( \tau \) :

Fraction of Nozzles Obstructed

\( K \) :

adjust function

\( \lambda \) :

exponential factor of \( \psi \)

\( n \) :

exponential factor of \( \tau \)

\( r \) :

up-leg radius

\( \overline{AC} \) :

distance from the centroid of the polygon (\( C(c_{x} ,c_{y} ) \)) formed by the connection of the injection nozzles in operation in the equipment to the center of the circle (\( A(r_{x} = r, r_{y} = r) \)) of the up-leg

\( A^{\prime\prime} \) :

area of the formed polygon

\( c_{x} \) e \( c_{y} \) :

coordinates of the C point of the centroid of the formed polygon

\( n_{p} \) :

number of sides of the polygon

\( \theta\,{\text{and}}\,\kappa \) :

Michaelis-Menten constants (Eq. [11])

\( N \) :

number of nozzle (Eq. [11])

References

  1. Toshihiko, E. M. I., ISIJ International, 2015, Vol. 55, pp. 36–66.

    Article  Google Scholar 

  2. D. Mukherjee, A. K. Shukla, D. G. Senk, Metall. Mater. Trans. B, 2017, Vol. 48B, pp. 763-771

    Article  Google Scholar 

  3. H. Ling, F. Li, L. Zhang, A.N. Conejo, Metall. and Mater. Trans. B, 2017, Vol. 47, pp. 1950-1961

    Google Scholar 

  4. V. Seshadri, C. A. da Silva, I. A. da Silva, G. A. Vargas, P. S. B. Lascosqui, Ironmaking and Steelmaking, 2006, Vol. 33, pp.34-38.

    Article  Google Scholar 

  5. Park Y-G., Yi K-W., Ahn S-B.: ISIJ Int., 2001, Vol. 41, pp. 403–409.

    Article  Google Scholar 

  6. L. Lin, Y. Bao, F. Yue, L. Zhang, and H. Ou, Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 483–89.

    Article  Google Scholar 

  7. Ono K., Yanagida, M., Katoh, T., Okamoto, T., Electrical Furnace Steel, 1981, vol. 52, pp. 149 – 157.

    Google Scholar 

  8. Seshadri, V., Costa, S.L.S., ISIJ International, 1986, vol. 26, p. 133 – 138.

    Article  Google Scholar 

  9. N. Kurokawa: Proc. of 5th Conference for License of RH Process, Thyssen Stahl Aktiengesellschaft, Vienna, Duisburg, (1987), Apud: Park, Y-G., Yi K-W., Ahn SB., ISIJ International, 2000, Vol.40, pp. 749-755.

    Article  Google Scholar 

  10. Kuwabara, T., Umezawa, K., Mori, K. & Watanabe, H., ISIJ International, 1988, vol. 28, pp. 305-314.

    Article  Google Scholar 

  11. C.A. da Silva, I.A. da Silva, E.M. de Castro Martins, V. Seshadri, C.A. Perim, G.A. Vargas Filho: Ironmak. Steelmak., 2004, Vol 31, pp. 37-42.

    Article  Google Scholar 

  12. NEVES, Leonardo; Masters Dissertation (Federal University of Minas Gerais, Engeneering School), 2008. (http://www.bibliotecadigital.ufmg.br/dspace/handle/1843/MAPO-7QJPTK)

  13. Zhu, B.; Liu, Q.; Zhao, D.; Ren, S.; Xu, M.; Yang, B.; Hu, B.; Steel Research Int., 2016, V.87, PP. 136-145.

    Article  Google Scholar 

  14. Park, Y-G., Yi K-W., Ahn S-B, ISIJ International, 2001, Vol. 41, pp. 403–409.

    Article  Google Scholar 

  15. D.C. Montgomery: Design and Analysis of Experiments, 8th ed., Whurr Publishing, 2013, chapter 11.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Bôscaro França.

Additional information

Manuscript submitted June 2, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trindade, L.C., Peixoto, J.J.M., da Silva, C.A. et al. Influence of Obstruction at Gas-Injection Nozzles (Number and Position) in RH Degasser Process. Metall Mater Trans B 50, 578–584 (2019). https://doi.org/10.1007/s11663-018-1474-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1474-6

Navigation