Skip to main content
Log in

Surface Characteristics and Hardness Variations in Electrical Discharge Machining of Enhanced Nitrogen in Vanadium Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Enhanced nitrogen in steels containing vanadium causes fine precipitates of vanadium nitride, which improve the hardenability properties. However, understanding the response of such steels to electrical discharge machining (EDM) is incomplete and needs further investigation. Therefore, EDM of enhanced nitrogen in steels containing vanadium was compared with a similar compositional steel that was free of nitrogen. The surface morphology, microstructural alterations, microhardness variation, and compositional depth profiling of the samples machined by EDM in oil and deionized water dielectric liquids were examined. Microscopic studies were carried out using optical and scanning electron microscopy. Phases were identified by X-ray diffractometry, and elemental depth profiling was performed using glow discharge optical emission spectroscopy. The hardness of the resolidified and heat-affected layers was measured using a Vickers type microhardness tester. The results of this study revealed that the dissolved nitrogen in steel decreased the probability of surface cracks and resulted in a softer resolidified layer structure when machining in the oil dielectric liquid. Thus, the presence of nitrogen reduced the formation of tension-induced martensite in the resolidified layer. Moreover, the heat-affected zone below the resolidified layer exhibited a uniform and harder structure, compared with the steel without nitrogen content, indicating the fast nature of the thermal cycles in EDM. The free nitrogen in steel did not dissociate during sparking; therefore, precipitation strengthening occurred in the heat-affected zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stasko R, Adrian H, Adrian A: Mater Charact., 2006, vol. 56, pp. 340–347.

    Article  Google Scholar 

  2. Abbasi S M, Shokuhfar A: J Iron Steel Res Int., 2007, vol. 14, pp. 74–78.

    Article  Google Scholar 

  3. Yang C, Wang Q: J Iron Steel Res Int., 2008, vol. 15, pp. 81–86.

    Article  Google Scholar 

  4. Lv Y, Sheng G, Jiao Y: Constr Build Mater., 2014, vol. 69, pp. 18–25.

    Article  Google Scholar 

  5. Oksiuta Z, Lewandowska M, Kurzydlowski K J, Baluc N: J Nucl Mater., 2013, vol. 442, pp. S84–S88.

    Article  Google Scholar 

  6. Glodowski R J: Int J Metall Eng., 2013, vol. 2, pp. 56–61.

    Google Scholar 

  7. Mohammed R, Reddy G M, Rao K S: Defence Technol., 2015, vol. 11, pp. 237–243.

    Article  Google Scholar 

  8. Hojjatzadeh S M H, Halvaee A, Sohi M H: J. Mater. Process. Technol., 2012, vol. 212, pp. 2496–2504.

    Article  Google Scholar 

  9. Yurev AB, Godik LA, Kozyrev NA, Korneva LV, Tokarev AV: Steel Transl., 2008, vol. 38, pp. 756–758.

    Article  Google Scholar 

  10. Soni J S, Chakraverti G: J Mater Process Tech., 1996, vol. 56, pp. 439–451.

    Article  Google Scholar 

  11. Ekmekci B: Metall. Mater. Trans. B., 2009, vol. 40, pp. 70–81.

    Article  Google Scholar 

  12. Ekmekci B: Appl. Surf. Sci., 2007, vol. 253. pp. 9234–9240.

    Article  Google Scholar 

  13. Ekmekci B, Tekkaya A E, Erden A: Int J Mach Tool Manu., 2006, vol. 46, pp. 858–868.

    Article  Google Scholar 

  14. Lee H T, Tai T Y: J Mater Process Tech., 2003, vol. 142, pp. 676–683.

    Article  Google Scholar 

  15. Guu Y H, Hou M T: Mater Sci Eng A., 2007, vol. 466, pp. 61–67.

    Article  Google Scholar 

  16. Santos R F, Silva E R, Sales W F, Raslan A A: Proc. CIRP, 2016, vol. 45, pp. 303–306.

    Article  Google Scholar 

  17. Assarzadeh S., Ghoreishi M: J. Manuf. Process, 2017, vol. 30, pp. 502–515.

    Article  Google Scholar 

  18. Buschaiah K, JagadeeswaraRao M, Krishnaiah A: Mater. Today: Proceedings, 2018, vol. 5, pp. 3648–3656.

    Article  Google Scholar 

  19. Dwivedi A P, Choudhury S K: Mater. Today: Proceedings, 2017, vol. 4, pp. 10816–10822.

    Article  Google Scholar 

  20. Flaño O, Ayesta I, Izquierdo B, Sánchez J A, Ramos J M: Procedia CIRP, 2018, vol. 68, pp. 405–410.

    Article  Google Scholar 

  21. Zeilmann R P, Ivaninski T, Webber C: Procedia CIRP, 2018, vol. 71, pp. 472–477.

    Article  Google Scholar 

  22. Reddy G V P, Mariappan K, Kannan R, Sandhya R, Sankaran S, Rao K B S: Int J Fatigue, 2015, vol. 81, pp. 309–317.

    Article  Google Scholar 

  23. Kıyak M, Çakır O: J Mater Process Tech., 2017, vol. 191, pp. 141–144.

    Article  Google Scholar 

  24. Ekmekci B, Yaşar H, Ekmekci N: J. Manuf. Sci. Eng., 2016, vol. 138, pp. 081006–1–9.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the funding by The Zonguldak Bülent Ecevit University Research Program. (Grant No. 2015-77654622-02.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nİhal Ekmekcİ.

Additional information

Manuscript submitted July 28, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekmekcİ, N., Keskİn, İ. Surface Characteristics and Hardness Variations in Electrical Discharge Machining of Enhanced Nitrogen in Vanadium Steels. Metall Mater Trans B 50, 98–109 (2019). https://doi.org/10.1007/s11663-018-1453-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1453-y

Keywords

Navigation