Skip to main content
Log in

Processing Techniques for ODS Stainless Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Oxide dispersion-strengthened (ODS) alloys have been studied extensively, in part as a response to the need to develop the high-temperature materials that are required for energy efficient systems. ODS stainless steels, in particular, are of technological interest because of their high ductility and high strength at elevated temperatures, which when combined with their resistance to corrosion, render them ideal for many applications that require extreme performance quality. Survey of the published literature reveals that efforts have been devoted to incorporate specific strengthening mechanisms in order to meet demanding performance criteria for ODS alloys. As a result, a number of novel processing approaches have been developed in an effort to design distinct microstructures that can enhance the performance of ODS alloys. In the current paper, various techniques used to manufacture ODS stainless steel alloys are compared and summarized on the basis of a literature search, and results are contrasted with selected experimental data obtained by the authors. In particular, cryomilling, water-atomization, and melt-spinning processes are described in detail as three novel approaches that can be effectively used to distribute nanometric oxides in 316L stainless steel matrix. The microstructural features, mechanical properties, and sintering behavior of the fabricated materials are described and discussed. The critical processing parameters for each processing technique are discussed with reference to the properties of the material. The versatility and potential challenges of the individual techniques are also described and contrasted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.E. Brittain: Proc. of IEEE, 2010, vol. 98, pp. 1102–1104.

    Article  Google Scholar 

  2. J. W. Pugh, R. F. Hehemann, and D. J. Diederich: Metall. Trans. A, 1980, vol. 11, pp. 2036–2038.

    Article  CAS  Google Scholar 

  3. K. M. Youssef, A. J. Zaddach, C. Niu, D. L. Irving, and C. C. Koch: Mater. Res. Lett., 2014, vol. 3831, pp. 95-99.

    Google Scholar 

  4. K. Matsumoto, M. Tojo, Y. Jinnai, N. Hayashi, and S. Ibaraki: Mitsubi Heavy Tech. Rev., vol. 45, pp. 1–5, 2008.

    Google Scholar 

  5. T. Roland, D. Retraint, K. Lu, and J. Lu: Mater. Sci. Eng. A, 2007, vol. 445–446, pp. 281–288.

    Article  Google Scholar 

  6. S. W. Nam: Mater. Sci. Eng. A, 2002, vol. 322, pp. 64–72.

    Article  Google Scholar 

  7. V. V. Satyanarayana, G. M. Reddy, and T. Mohandas: J. Mater. Process. Technol., 2005, vol. 160, pp. 128–137.

    Article  CAS  Google Scholar 

  8. J. H. Lee: Appl. Mech. Mater., 2011, vol. 87, pp. 243–248.

    Article  CAS  Google Scholar 

  9. A. K. Mukherjee and R. S. Mishra: Proc. Johannes Weertman Symp., 1996, pp. 119–26.

  10. S. Ukai, S. Mizuta, M. Fujiwara, T. Okuda, and T. Kobayashi: J. Nucl. Sci. Technol., 2002, vol. 39, pp. 778–788.

    Article  CAS  Google Scholar 

  11. P. S. Gilman and J. S. Benjamin: Annu. Rev. Mater. Sci., 1983, vol. 13, pp. 279–300.

    Article  CAS  Google Scholar 

  12. D. J. Larson, P. J. Maziasz, I. S. Kim, and K. Miyahara: Scr. Mater., 2001, vol. 44, pp. 359–364.

    Article  CAS  Google Scholar 

  13. Z. Oksiuta and N. Baluc: J. Nucl. Mater., 2009, vol. 386–388, pp. 426–429.

    Article  Google Scholar 

  14. L. Hsiung, M. Fluss, S. Tumey, J. Kuntz, B. El-Dasher, M. Wall, B. Choi, A. Kimura, F. Willaime, and Y. Serruys: J. Nucl. Mater., 2011, vol. 409, pp. 72–79.

    Article  CAS  Google Scholar 

  15. R. B. Ellis: American Scientist, 1964, vol. 52, pp. 476–487.

    Google Scholar 

  16. X. Zeng, S. R. Nutt, and E. J. Lavernia: Metall. Mater. Trans. A, 1995, vol. 26, pp. 817–827.

    Article  CAS  Google Scholar 

  17. J. R. Pickens: J. Mater. Sci., 1981, vol. 16, pp. 1437–1457.

    Article  CAS  Google Scholar 

  18. G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma: Nat. Mater., 2013, vol. 12, pp. 344–50.

    Article  CAS  Google Scholar 

  19. S. Noh, R. Kasada, A. Kimura, S. H. C. Park, and S. Hirano: J. Nucl. Mater., 2011, vol. 417, pp. 245–248.

    Article  CAS  Google Scholar 

  20. M. Klimenkov, R. Lindau, and A. Möslang: J. Nucl. Mater., 2009, vol. 386–388, pp. 557–560.

    Article  Google Scholar 

  21. M. J. Hampden-Smith and T. T. Kodas: Chem. Vap. Depos., 1995, 1: 8–23.

    Article  CAS  Google Scholar 

  22. Z. G. Liu, X. J. Hao, K. Masuyama, K. Tsuchiya, M. Umemoto: Ultrafine Grained Materials II, 1st edn, Wiley, Hoboken, NJ, 2002.

    Google Scholar 

  23. C. Suryanarayana, E. Ivanov, and V. Boldyrev: Mater. Sci. Eng. A, 2001, vol. 304–306, pp. 151–158.

    Article  Google Scholar 

  24. E. J. Lavernia, B. Q. Han, and J. M. Schoenung: Mater. Sci. Eng. A, 2008, vol. 493, pp. 207–214.

    Article  Google Scholar 

  25. S. Noh, B. Choi, S. Kang, and T. Kim: Nuclear Engineering and Technology, 2014, vol. 46, pp. 857-862.

    Article  Google Scholar 

  26. J. R. Rieken, I. E. Anderson, M. J. Kramer, G. R. Odette, E. Stergar, and E. Haney: J. Nucl. Mater., 2012, vol. 428, pp. 65–75.

    Article  CAS  Google Scholar 

  27. C. Schade: Surface modifications of PM Stainless Steel for Enhanced Corrosion Resistance. GKN Hoeganaes Inc., Cinnaminson (2016).

    Google Scholar 

  28. S. Norgren: Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden, 2000.

  29. V. I. Tkatch, A. I. Limanovskii, S. N. Denisenko, and S. G. Rassolov: Mater. Sci. Eng. A, 2002, vol. 323, pp. 91–96.

    Article  Google Scholar 

  30. C. Dai, D. Cote, C. Schade, E. Lavernia, D. Apelian: Oxidation behavior of water-atomized De-Cr-(Si)-Y. Submitted to J. Alloys Compd., 2017.

  31. C. T. Schade, J. W. Schaberl, and A. Lawley: Int. J. Powder Metall. vol. 44, 2008, pp. 57–67.

    CAS  Google Scholar 

  32. N. Saunders and A.P. Miodownick: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, 1998.

  33. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  34. L. L. Hsiung: Microscopy: Science, Technology, Applications, and Education, 1st ed., Lawrence Livermore National Laboratory, Livermore, CA, 2010, pp. 1811–1819.

    Google Scholar 

  35. F. Zhou, X. Z. Liao, Y. T. Zhu, S. Dallek, and E. J. Lavernia: Acta Mater., 2003, vol. 51, pp. 2777–2791.

    Article  CAS  Google Scholar 

  36. R. L. Coble: J. Appl. Phys., 1961, vol. 32, pp. 787–792.

    Article  CAS  Google Scholar 

  37. A. Hirata, T. Fujita, Y. R. Wen, J. H. Schneibel, C. T. Liu, and M. W. Chen : Nat. Mater., 2011, vol. 10, pp. 922–6.

    Article  CAS  Google Scholar 

  38. C. Dai, L. Kurmanaeva, C. T. Schade, D. Apelian, and E. J. Lavernia: Microstructure and mechanical behavior of ODS stainless steel fabricated using cryomilling. Submitted to Metall. Mater. Trans. A, 2017.

  39. Z. Zhang and D. Chen: Scr. Mater., 2006, vol. 54, pp. 1321–1326.

    Article  CAS  Google Scholar 

  40. J. J. Huet: Met. Powder Rep., 1985, vol. 40, pp. 197–213.

    Google Scholar 

  41. H. G. A.H. Chokshi, A. Rosen, J. Karch: Scr. Mater., 1989, vol. 23, pp. 1679–1683.

    Article  CAS  Google Scholar 

  42. P. Miao, G. R. Odette, T. Yamamoto, M. Alinger, and D. Klingensmith: J. Nucl. Mater., 2008, vol. 377, pp. 59–64.

    Article  CAS  Google Scholar 

  43. Z. Oksiuta, M. Lewandowska, and K. J. Kurzydłowski: Mech. Mater., 2013, vol. 67, pp. 15–24.

    Article  Google Scholar 

  44. M. J. Alinger, G. R. Odette, and D. T. Hoelzer: J. Nucl. Mater., 2004, vol. 329–333, pp. 382–386.

    Article  Google Scholar 

  45. J. Hamill, C. Schade, and N. Myers: Met. Powder Rep., 2001, 56: 47.

    Google Scholar 

Download references

Acknowledgments

This research project was supported by the Hoeganaes Corporation (Cinnaminson, New Jersey) and the Materials Design Institute, funded by the LANL/UC Davis Education Research Collaboration, Los Alamos National Laboratory (LANS Subcontract No. 75 782-001-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique J. Lavernia.

Additional information

Manuscript submitted April 16, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Schade, C., Apelian, D. et al. Processing Techniques for ODS Stainless Steels. Metall Mater Trans B 49, 3043–3055 (2018). https://doi.org/10.1007/s11663-018-1429-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1429-y

Keywords

Navigation