Skip to main content
Log in

Nonisothermal Crystallization Kinetics of Glassy Mold Fluxes

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Crystallization of the solid glassy mold flux film occurring in the gap between the initial shell and mold wall is important, as it determines the in-mold heat transfer and mold lubrication during the process of continuous casting. In order to study the nonisothermal crystallization behavior of the glassy mold flux film in the continuous casting mold, the continuous heating transformation diagram, crystallization mechanism, and precipitate phases were investigated using the single hot thermocouple technique, kinetic models, a scanning electron microscope, and an energy-dispersive spectrometer (EDS). The results show that the initial crystallization temperature for CaO-SiO2 based flux A ranges from [1086 K to 1147 K (813 °C to 874 °C)], which is lower than the case of CaO-Al2O3 based flux B ranging from [1205 K to 1245 K (932 °C to 972 °C)]. The crystallization kinetics for flux A are constant nucleation rate, two-dimensional growth, and control by diffusion. For flux B, they are constant nucleation rate, three-dimensional growth, and control by interface reaction. Besides, the EDS results indicate that the precipitate crystals in fluxes A and B are CaSiO3 and Ca2AlSiO4, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Mills, A. Fox, Z. Li, and R. Thackray: Ironmak. Steelmak., 2005, vol. 32, pp. 26–34.

    Article  CAS  Google Scholar 

  2. K. Mills and A. Fox: Trans. Iron Steel Inst. Jpn., 2007, vol. 43, pp. 1479–86.

    Article  Google Scholar 

  3. W. Wang, L. Zhou, and K. Gu: Metall. Mater. Int., 2010, vol. 16, pp. 913–20.

    Article  Google Scholar 

  4. H. Nakada, H. Fukuyama, and K. Nagata: Trans. Iron Steel Inst. Jpn., 2006, vol. 46, pp. 1660–67.

    Article  CAS  Google Scholar 

  5. Z. Li, R. Thackray, and K. Mills: VII Int. Conf. on Molten Slags, Fluxes and Slats, The Southern African Institute of Mining and Metallurgy, Marshalltown, South Africa, 2004, pp. 813–20.

  6. D. Yoon, J. Cho, and S. Kim: Met. Mater. Int., 2015, vol. 21, pp. 580–87.

    Article  Google Scholar 

  7. Y. Kashiwaya, C. Cicutti, A. Cramb, and K. Ishii: ISIJ Int., 2007, vol. 38. pp. 348–56.

    Article  Google Scholar 

  8. Z. Zhang, G. Wen, and Y. Zhang: Int. J. Min. Met. Mater., 2011, vol. 18, pp. 150–58.

    Article  CAS  Google Scholar 

  9. L. Zhou, W. Wang, D. Huang, and J. Li: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 925–36.

    Article  Google Scholar 

  10. Y. Maldonado, F. Acosta, A. Castillejos, and B. Thomas: Iron Steel Technol., 2013, vol. 10, pp. 65–75.

    CAS  Google Scholar 

  11. L. Zhou, W. Wang, F. Ma, and J. Wei: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 354–62.

    Article  Google Scholar 

  12. Y. Kashiwaya, C. Cicutti, and A. Cramb: ISIJ Int., 1998, vol. 38, pp. 367–85.

    Google Scholar 

  13. B. Jiang, W. Wang, I. Sohn, J. Wei, and L. Zhou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1057–67.

    Article  Google Scholar 

  14. C. Shi, M. Seo, H. Wang, J. Cho, and S. Kim: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 345–56.

    Article  Google Scholar 

  15. S. Choi, D. Lee, D. Shin, S. Choi, and J. Cho: J. Non-Cryst. Solids, 2004, vol. 345, pp. 157–60.

    Article  Google Scholar 

  16. L. Zhou, H. Li, W. Wang, Z. Wu, and J. Yu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1–12.

    Google Scholar 

  17. C. Yang, G. Wen, and P. Tang: Steel Res. Int., 2016, vol. 87, pp. 880–89.

    Article  CAS  Google Scholar 

  18. M. Seo, C. Shi, H. Wang, J. Cho, and S. Kim: J. Non-Cryst. Solids, 2015, vol. 412, pp. 58–65.

    Article  CAS  Google Scholar 

  19. K. Tsutsumi, T. Nagasaka, and M. Hino: ISIJ Int., 1999, vol. 39, pp. 1150–59.

    Article  CAS  Google Scholar 

  20. Z. Wang, Q. Shu, and K. Chou: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 606–13.

    Article  Google Scholar 

  21. H. Ryu, Z. Zhang, J. Cho, G. Wen, and S. Sridhar: ISIJ Int., 2010, vol. 50, pp. 1142–50.

    Article  CAS  Google Scholar 

  22. T. Liu, Z. Mo, and H. Zhang: J. Appl. Polym. Sci., 2015, vol. 67, pp. 815–21.

    Article  Google Scholar 

  23. T. Liu, Z. Mo, S. Wang, and H. Zhang: Polym. Eng. Sci., 1997, vol. 37, pp. 568–75.

    Article  CAS  Google Scholar 

  24. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    Article  CAS  Google Scholar 

  25. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212–24.

    Article  CAS  Google Scholar 

  26. M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177–84.

    Article  CAS  Google Scholar 

  27. T. Ozawa: Polymer, 1971, vol. 12, pp. 150–58.

    Article  CAS  Google Scholar 

  28. M. Abareshi, S. Zebarjad, and E. Goharshadi: Bull. Mater. Sci., 2014, vol. 37, pp. 1113–21.

    Article  CAS  Google Scholar 

  29. H. Kissinger: J. Res. Nat. Bur. Stand., 1956, vol. 57, pp. 217–21.

    Article  CAS  Google Scholar 

  30. R. Wellen, E. Canedo, and M. Rabello: J. Mater. Res., 2011, vol. 26, pp. 1107–05.

    Article  CAS  Google Scholar 

  31. L. Zhou, H. Li, W. Wang, D. Xiao, L. Zhang, and J. Yu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2232–40.

    Article  Google Scholar 

  32. G. Kim and I. Sohn: J. Non-Cryst. Solids, 2012, vol. 358, pp. 1530–37.

    Article  CAS  Google Scholar 

  33. H. Kim, H. Matsuura, F. Tsukihashi, W. Wang. D. Min, and I. Sohn (2013) Metall. Mater. Trans. B 44:5–12.

    Article  Google Scholar 

  34. J.W. Christian: The Theory of Transformations in Metals and Alloys, 3rd ed., Pergamon Press Ltd., London, 2002.

    Google Scholar 

  35. K. Prapakorn: Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 2003.

  36. D. MacFarlane and M. Fragoulis: Phys. Chem. Glasses, 1986, vol. 37, pp. 228–34.

    Google Scholar 

  37. C. Orrling: Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 2000.

  38. M. Allibert, H. Gaye, J. Geiseler, D. Janke, B.J. Keene, D. Kirner, M. Kowalski, J. Lehmann, K.C. Mills, D. Neuschutz, R. Parra, C. Sanint-Jours, R.J. Spencer, M. Susa, M. Tmar, and E. Woermann: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Dusseldorf, Germany, 1995.

    Google Scholar 

Download references

Acknowledgments

Financial support from the National Science Foundation of China (Grant Nos. 51504294 and U1760202) and the opening foundation from the Ministry of Education Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Additional information

Manuscript submitted June 12, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Li, H., Wang, W. et al. Nonisothermal Crystallization Kinetics of Glassy Mold Fluxes. Metall Mater Trans B 49, 3019–3029 (2018). https://doi.org/10.1007/s11663-018-1427-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1427-0

Keywords

Navigation