Skip to main content
Log in

Mechanism of Low-Temperature Reduction Degradation of Alumina-Containing Hematite Solid Solution Below 550 °C

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Low-temperature reduction degradation (LTRD) of sinter has an adverse effect on blast furnace permeability, and it is mainly caused by the stress produced in the reduction process of hematite. This stress is strongly influenced by alumina dissolved in hematite crystal lattice. In this work, the experiments were conducted to investigate the effect of alumina dissolved in hematite solid solution (Hss) on LTRD by reducing Hss below 550 °C. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and optical microscope have been used to characterize the mass change and mineral change of samples, respectively. Jade software has been used to calculate the micro strain in magnetite for quantitatively studying the change of strain in reducing process. The results show that alumina was unfavorable to the reduction of Hss on thermodynamics, and the starting reduction temperature of Hss containing 6.0 mol pct alumina was 28 °C higher than that of pure hematite. According to the calculation on kinetics, the generation rate of stress was accelerated by dissolving alumina into hematite crystal lattice. The apparent activation energy of reduction reaction lowered from 47.89 to 28.07 kJ/mol with the increase of alumina content from 0.0 to 6.0 mol pct. The addition of alumina also increased the stress in the reduction products, and this stress was released in the form of LTRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. E. Loo and W. Leung: ISIJ Int., 2003, vol. 43, pp. 1393-402.

    Article  CAS  Google Scholar 

  2. Y. F. Guo and X. M. Guo: ISIJ Int., 2017, vol. 57, pp. 228-35.

    Article  CAS  Google Scholar 

  3. Q. D. Zhou: Iron Ore Agglomeration Theory and Technology, Beijing, 1989, pp. 9–12.

  4. L. Lu, R. J. Holmes and J. R. Manuel: ISIJ Int., 2007, vol. 47, pp. 349-58.

    Article  CAS  Google Scholar 

  5. A. Cores, A. Babich and M. Muñiz: ISIJ Int., 2010, vol. 50, pp. 1089-98.

    Article  CAS  Google Scholar 

  6. N. Takeuchi, Y. Iwami and T. Higuchi: ISIJ Int., 2014, vol. 54, pp. 791-800.

    Article  CAS  Google Scholar 

  7. J. J. Dong, G. Wang and Y. G. Gong: Ironmak. Steelmak., 2015, vol. 42, pp. 34-40.

    Article  CAS  Google Scholar 

  8. L. H. Hsieh and J. A. Whiteman: ISIJ Int., 1993, vol. 33, pp. 462-73.

    Article  CAS  Google Scholar 

  9. L. S. Li, J. B. Liu and X. R. Wu: ISIJ Int., 2010, vol. 50, pp. 327-29.

    Article  CAS  Google Scholar 

  10. H. P. Pimenta and V. Seshadri: Ironmak. Steelmak., 2002, vol. 29, pp. 175-79.

    Article  CAS  Google Scholar 

  11. M. M. Hessien, Y. Kashiwaya and K. Ishil: Ironmak. Steelmak., 2008, vol 35, 191-204.

    Article  CAS  Google Scholar 

  12. Y. Yamaoka, S. Nagaoka and Y. Yamada: Trans. ISIJ, 1974, vol. 14, pp. 185-94.

    Google Scholar 

  13. J. M. F. Clout and J. R. Manuel: Iron Ore: Mineralogy, Processing and Environmental Sustainability, Elsevier, Woodhead Publishing, Cambridge, 2015, pp. 45-84.

    Book  Google Scholar 

  14. A. Muan and C. L. Gee: J. Am. Ceram. Soc., 1956, vol. 39, pp. 207-14.

    Article  CAS  Google Scholar 

  15. H. Y. Lee: J. Am. Ceram. Soc., 1995, vol. 78, pp. 2149-52.

    Article  CAS  Google Scholar 

  16. V. Reghavan: J. Phase Equilib. Diff., 2010, vol. 31, p. 367.

    Article  Google Scholar 

  17. I. Shigaki, M. Sawada and M. Maekawa: Trans. ISIJ, 1982, vol. 22, pp. 838-47.

    Article  Google Scholar 

  18. I. Shigaki, M. Sawada and N. Gennai: Trans. ISIJ, 1986, vol. 26, pp. 503-11.

    Article  CAS  Google Scholar 

  19. H. P. Pimenta and V. Seshadri: Ironmak. Steelmak., 2002, vol. 29, pp. 169-74.

    Article  CAS  Google Scholar 

  20. F. Matsuno, S. Nishikida and H. Ikesaki: Trans. ISIJ, 1984, vol. 24, pp. 1040-49.

    Article  CAS  Google Scholar 

  21. F. Matsuno, S. Nishikida and H. Ikesaki: Trans. ISIJ, 1984, vol. 24, pp. 275-83.

    Article  CAS  Google Scholar 

  22. Y. K. Rao: Metall. Mater. Trans. B, 1971, vol. 2, pp. 1439-47.

    Google Scholar 

  23. Y. K. Rao and M. Moinpour: Metall. Mater. Trans. B, 1983, vol. 14B, pp. 711-23.

    Article  CAS  Google Scholar 

  24. A. V. Bradshaw and A. G. Matyas: Metall. Mater. Trans. B, 1976, vol. 7B, pp. 81-87.

    Article  CAS  Google Scholar 

  25. A. A. EL-Geassy and M. I. Nasr (1990) ISIJ Int. J., 30: 417-25.

    Article  CAS  Google Scholar 

  26. R. Chaigneau and R. H. Heerema: Metall. Mater. Trans. B, 1991, vol. 22B, pp. 503-11.

    Article  CAS  Google Scholar 

  27. Y. Kapelyushin, X. Xing and J. Q. Zhang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1175-85.

    Article  Google Scholar 

  28. Y. X. Hua: Kinetics of Metallurgical Processes, Beijing, 2004, pp. 10–12.

  29. J. Y. Zhang: Physical Chemistry of Metallurgy, Beijing, 2009, pp. 154–56.

  30. J. W. Huang and Z. Li: X-ray Diffraction of Polycrystalline Materials, Beijing, 2013, pp. 156–61.

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (U1460201 and No. 51774029) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Min Guo.

Additional information

Manuscript submitted June 28, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Guo, XM. Mechanism of Low-Temperature Reduction Degradation of Alumina-Containing Hematite Solid Solution Below 550 °C. Metall Mater Trans B 49, 3513–3521 (2018). https://doi.org/10.1007/s11663-018-1426-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1426-1

Keywords

Navigation