Skip to main content
Log in

Effect of Partial Substitution of Mn for Ni on Mechanical Properties of Friction Stir Processed Hypoeutectic Al-Ni Alloys

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, the mechanical properties of as-cast and FSPed Al-2Ni-xMn alloys (x = 1, 2, and 4 wt pct) were investigated and compared with those of the as-cast and FSPed Al-4Ni alloy. According to the results, the substitution of 2 wt pct Mn for 2 wt pct Ni leads to the formation of fine Mn-rich intermetallics in the microstructure increasing the tensile strength, microhardness, fracture toughness, and specific strength of alloy by 22, 56, 45, and 35 pct, respectively. At higher Mn concentrations, the formation of large Mn-rich platelets in the microstructure reduces the tensile properties. Friction stir processing at 12 mm/min and 1600 rpm significantly enhances both the strength and ductility of the alloy. The tensile strength, yield strength, fracture strain, fracture toughness, microhardness, and specific strength of FSPed Al-2Ni-4Mn alloy improved by 97, 83, 30, 380, 152, and 110  pct, respectively, as compared to those of the as-cast Al-4Ni alloy. This can be attributed to dispersion strengthening of Ni- and Mn-rich dispersoids, formation of ultrafine grains, and elimination of casting defects. The fractography results also show that the brittle fracture mode of the as-cast Mn-rich alloys turns to a more ductile mode, comprising fine and equiaxed dimples in FSPed samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W. Yu, Q. Hao, L. Fan, and J. Li: J. Alloys Comp., 2016, Vol. 688, pp. 798-803.

    Article  CAS  Google Scholar 

  2. Y. Fan, K. Huang, MM Makhlouf (2015) Metall. Mater. Trans. A 46:5830–5841.

    Article  Google Scholar 

  3. N.A. Belov, A.N. Alabin, and D.G. Eskin: Scrip. Mater., 2004, Vol. 50, pp. 89-94.

    Article  CAS  Google Scholar 

  4. J.C. Lin, V.S. Zolotorevsky, M.V. Glazoff, S.J. Murtha, and N.A. Belov: US Patent No. 783730B2, 2001.

  5. C. Suwanpreecha, P. Pandee, U. Patakham, and C. Limmaneevichitr: Mater. Sci. Eng. A, 2018, Vol. 709, pp. 46-54.

    Article  CAS  Google Scholar 

  6. J.T. Kim, S.H. Hong, J.M. Park, J. Eckert, and K.B. Kim: J. alloys comp., 2018, Vol. 749, pp. 205-210.

    Article  CAS  Google Scholar 

  7. B.K. Prasad, K. Venkateswarlu, O.P. Modi, A.K. Jha, S. Das, R. Dasgupta, and A.H. Yegneswaran: Met. Mater. Trans. A, 1998, Vol. 29A, pp. 2747-2752.

    Article  CAS  Google Scholar 

  8. J.W. Martin, R.D. Doherty, and B. Cantor, Stability of microstructure in metallic systems, Cambridge University press, Cambridge, UK, 1997, pp. 298-300.

    Book  Google Scholar 

  9. W.H. Hunt Jr: J. Powder Metal., 2000, Vol. 36, pp. 51-60.

    CAS  Google Scholar 

  10. P. Sampath, V. Krishna Parangodath, K.R. Udupa, and U.B. Kuruveri: J. Composites., 2015, Vol. 2015, pp. 1-9.

    Article  Google Scholar 

  11. P. Pandey, S. Kashyap, C.S. Tiwary, and K. Chattopadhyay: Met. Mater. Trans. A, 2017, Vol. 48, pp. 5940-5950.

    Article  Google Scholar 

  12. J. Mu, P. Sha, Z. Zhu, Y. Wang, H. Zhang, and Z. Hu: J. Mater. Res., 2014, Vol. 29, pp. 708-17.

    Article  CAS  Google Scholar 

  13. E. Karaköse, T. Karaaslan, M. Keskin, and O. Uzun: J. Mater. Proc. Tech., 2008, Vol. 195, pp. 58-62.

    Article  Google Scholar 

  14. M. Ragab, and H.G. Salem: in Investigation of the Structural Stability of Nanostructured Al-5.7wt%-Ni Mechanically Alloyed Eutectic Alloy Powder, TMS (The Minerals, Metals & Materials Society), M. Hyland, ed., Light Metals, Springer, Cham, 2015, pp. 346–52.

  15. Y. Du, Y. Chang, B. Huang, W. Gong, Z. Jin, and H. Xu: Mater. Sci. Eng. A, 2003, Vol. 363A, pp. 140-151.

    Article  Google Scholar 

  16. G. Gonzalez, G.A. Lara-Rodriguez, A. Sandoval-Jiménez, W. Saikaly, and A. Charai: Mater. Char. 2008, Vol. 59, pp. 1607-1612.

    Article  CAS  Google Scholar 

  17. Yangyang Fana, and Makhlouf M. Makhlouf: Mater. Sci. Forum, 2013, Vol. 765, pp 8-12.

    Article  Google Scholar 

  18. V. Sharma, U. Prakash, and B.V.M. Kumar: J. Mater. Proc. Tech., 2015, Vol. 224, pp. 117–134.

    Article  CAS  Google Scholar 

  19. P. Teymoory, A. Zarei-Hanzaki, E. Farabi, H. Monajati, and H.R. Abedi: Adv. Eng. Mater., 2017, Vol. 11, 1700502.

    Google Scholar 

  20. Z.Y. Ma: Met. Mater. Trans. A, 2008, Vol. 39, pp. 642-658.

    Article  CAS  Google Scholar 

  21. J.Q. Su, T.W. Nelson, and C.J. Sterling: Philos. Mag., 2006, Vol. 86, pp. 1-24.

    Article  CAS  Google Scholar 

  22. M.S. Węglowski: Arch. Civil Mech. Eng., 2018, Vol. 18, pp. 114-129.

    Article  Google Scholar 

  23. R.S. Mishra, and Z.Y. Ma: Mater. Sci. Eng. R, 2005, Vol. 50, pp. 1-78.

    Article  Google Scholar 

  24. Z.Y. Ma, S.R. Sharma, and R.S. Mishra: Met. Mater. Trans. A, 2006, Vol. 37, pp. 3323-3336.

    Article  CAS  Google Scholar 

  25. Y. Yang, Y. Zhao, X. Kai, and R. Tao: J. Alloys Comp., 2017, Vol. 710, pp. 225-233.

    Article  CAS  Google Scholar 

  26. P. Nelaturu, S. Jana, R.S. Mishra, G. Grant, and B.E. Carlson: Mater. Sci. Eng. A., 2018, Vol. 716, pp. 165-178.

    Article  CAS  Google Scholar 

  27. Z. Du, M.-J. Tan, J.-F. Guo, and J. Wei, J. Mater., 2018, Vol. 230, pp. 825–833.

    Google Scholar 

  28. M. Barmouz, K. Abrinia, and J. khosravi: Mater. Sci. Eng. A, 2013, Vol. 559, pp. 917–919.

    Article  CAS  Google Scholar 

  29. M.M. El-Rayes, and E.A. El-Danaf: J. Mater. Proc. Tech., 2012, Vol. 212, pp. 1157-1168.

    Article  CAS  Google Scholar 

  30. Ø. Ryen, B. Holmedal, Q. Nijs, E. Nes, E. Sjölander, and H-E. Ekström: Met. Mater. Trans. A, 2006, Vol. 37, pp. 1999-2006.

    Article  Google Scholar 

  31. M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, and S.H. Seyyedein: Prog. Nat. Sci. Mater. Int., 2016, Vol. 26, pp. 182-191.

    Article  CAS  Google Scholar 

  32. K.A. Darling, A.J. Roberts, L. Armstrong, D. Kapoor, M.A. Tschopp, and L.J. Kecskes: Mater. Sci. Eng. A, 2014, Vol. 589, pp. 57-65.

    Article  CAS  Google Scholar 

  33. Q. Zhao, B. Holmedal, Y. Li, E. Sagvolden, and O.M. Løvvik, Mater. Sci. Eng. A, 2015, Vol. 625, pp. 153-157.

    Article  CAS  Google Scholar 

  34. A.M.F. Muggerud, E.A. Mørtsell, Y. Li, and R. Holmestad: Mater. Sci. Eng. A, 2013, Vol. 567, pp. 21-28.

    Article  CAS  Google Scholar 

  35. K.T. Huang, T.S. Lui, and L.H. Chen: Mater. Trans., 2006, Vol. 47, pp. 2405-2412.

    Article  CAS  Google Scholar 

  36. R.D. Askeland, P.P. Fulay, and W.J. Wright: “The Science and Engineering of Materials”, 6th ed., Cengage Learning, Stamford, USA, 2010, pp. 539-540.

    Google Scholar 

  37. F. Hannard, S. Castin, E. Maire, R. Mokso, T. Pardoen, and A.Simar: Acta Mater., 2017, Vol. 130, pp. 121-136.

    Article  CAS  Google Scholar 

  38. F.J. Humphreys, and M. Hatherly: “Recrystallization and related annealing phenomena”, 2nd ed., Elsevier Ltd, Killington, Oxford, UK, 2004.

    Google Scholar 

  39. Y.S. Sato, S.H.C. Park, and H. Kokawa: Met. Mater. Trans. A, 2001, Vol. 32, pp. 3033-3042.

    Article  Google Scholar 

  40. K.V. Jata, K.K. Sankaran, and J.J. Ruschau: Met. Mater. Trans. A, 2000, Vol. 31, pp. 2181-2192.

    Article  Google Scholar 

  41. K.T. Huang, T.S. Lui, and L.H. Chen: Mater. Trans., 2005, Vol. 46, pp. 3051-3058.

    Article  CAS  Google Scholar 

  42. N. Akaberi, R. Taghiabadi, and A. Razaghian, J. Tribology, 2017, Vol. 139, pp. 051602-1-051602-10.

    Article  Google Scholar 

  43. M. Asadian Nozari, R. Taghiabadi, M. Karimzadeh, and M.H. Ghoncheh, Metall. Mater. Trans. B, 2018, Vol. 49, pp. 1236–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Taghiabadi.

Additional information

Manuscript submitted April 30, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, F., Taghiabadi, R. & Baghshahi, S. Effect of Partial Substitution of Mn for Ni on Mechanical Properties of Friction Stir Processed Hypoeutectic Al-Ni Alloys. Metall Mater Trans B 49, 3007–3018 (2018). https://doi.org/10.1007/s11663-018-1422-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1422-5

Keywords

Navigation