Skip to main content
Log in

Prediction of Cooling Curves for Controlled Unidirectional Solidification Under the Influence of Shrinkage: A Semi-analytical Approach

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Quality of casting products can be significantly improved by controlling the crystal growth rate. Both dendritic and equiaxed grain structures depend strongly on crystal growth rate along the crystallographic direction. Uncontrolled solidification processes may lead to the formation of porous and columnar material with an extremely non-homogeneous composition distribution. These undesirable micro-structures can be avoided by adopting an optimal cooling rate (K/s) during the crystal growth. The present work focuses on determining suitable cooling curves to obtain desired unidirectional crystal growth rates, by implementing a semi-analytical model. Here, we defined cooling curve as the time history of temperature evolution at the cold boundary. The proposed semi-analytical heat transfer model is diffusion driven and accounts for shrinkage effect during solidification. The proposed model is found capable of predicting cooling curves for prescribed interface velocities. The model is self-sufficient in validating itself by means of solving inverse and forward problems. The cooling curve prediction by the model is validated by using it as the transient boundary condition for an existing enthalpy updating scheme-based numerical model. The proposed model is also applied to empirical data reported in literature, to validate the model against experimental results. All the validations showcased excellent fit. The proposed model will facilitate controlled unidirectional crystal growth rate by providing cooling rate (K/s) as an input for the experiments involving directional solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.M. Gokhale, G.R. Patel, Materials Science and Engineering: A 392, 184–190 (2005)

    Article  Google Scholar 

  2. V.H. Lopez, A. Scoles, A.R. Kennedy, Materials Science and Engineering: A 356, 316–325 (2003)

    Article  Google Scholar 

  3. J. Hemanth, Materials & Design 21, 1–8 (1999)

    Article  Google Scholar 

  4. H. Liao, Y. Sun, G. Sun, Materials Science and Engineering: A 335, 62–66 (2002)

    Article  Google Scholar 

  5. L.Z. Zhuang, E.W. Langer, Journal of materials science 24, 381–388 (1989)

    Article  CAS  Google Scholar 

  6. B. Zhang, W. Chen, D.R. Poirier, Fatigue and Fracture of Engineering Materials and Structures 23, 417–423 (2000)

    Article  CAS  Google Scholar 

  7. L.Y. Zhang, Y.H. Jiang, Z. Ma, S.F. Shan, Y.Z. Jia, C.Z. Fan, W.K. Wang, Journal of materials processing technology 207, 107–111 (2008)

    Article  CAS  Google Scholar 

  8. V.A. Hosseini, S.G. Shabestari, R. Gholizadeh, Materials & Design 50, 7–14 (2013)

    Article  CAS  Google Scholar 

  9. W.J. Boettinger, D. Shechtman, R.J. Schaefer, F.S. Biancaniello, Metallurgical transactions A 15, 55–66 (1984)

    Article  CAS  Google Scholar 

  10. J.A. Sarreal, G.J. Abbaschian, Metallurgical Transactions A 17, 2063–2073 (1986)

    Article  CAS  Google Scholar 

  11. M.A. Taha, N.A. El-Mahallawy, R.M. Rawai, Materials & design 23, 195–200 (2002)

    Article  CAS  Google Scholar 

  12. D. Eskin, Q. Du, D. Ruvalcaba, L. Katgerman, Materials Science and Engineering: A 405, 1–10 (2005)

    Article  Google Scholar 

  13. Q. Du, D.G. Eskin, A. Jacot, L. Katgerman, Acta materialia 55, 1523–1532 (2007)

    Article  CAS  Google Scholar 

  14. G. Kasperovich, T. Volkman, L. Ratke, D. Herlach, Metallurgical and Materials Transactions A 39, 1183–1191 (2008)

    Article  CAS  Google Scholar 

  15. Q. Du, A. Jacot, Acta Materialia 53, 3479–3493 (2005)

    Article  CAS  Google Scholar 

  16. K.E. Dorschu, Welding Journal 47, S49–S62 (1968)

    Google Scholar 

  17. J.W. Mullin, J. Nỳvlt, Chemical Engineering Science 26, 369–377 (1971)

    Article  CAS  Google Scholar 

  18. W.E. Lukens, R.A. Morris, E.C. Dunn, David W Taylor Naval Ship Research and Development Center Annapolis MD Ship Mater. Engg. Dept. (1981)

  19. Ch-A Gandin, Acta Materialia 48, 2483–2501 (2000)

    Article  CAS  Google Scholar 

  20. Ch-A Gandin, ISIJ international 40, 971–979 (2000)

    Article  CAS  Google Scholar 

  21. J. Alkemper, S. Sous, C. Stöcker, L. Ratke, Journal of crystal growth 191, 252–260 (1998)

    Article  CAS  Google Scholar 

  22. P.W. Bridgman: US Patent 1,793,672, 1931.

  23. S. Tingquist and E. Laux: US Patent 3,841,384, 1974.

  24. A.F. Giamei, J.G. Tschinkel, Metallurgical transactions A 7, 1427–1434 (1976)

    Article  CAS  Google Scholar 

  25. S. Das, R.M. Krishna, S. Ma, K.C. Mandal, Journal of Crystal Growth 381, 148–152 (1913)

    Article  Google Scholar 

  26. A.D. Monde, P.R. Chakraborty, Physics Letters A 381, 3349–3354 (2017)

    Article  CAS  Google Scholar 

  27. P.R. Chakraborty, K.R. Hiremath, M. Sharma, Physics Letters A 381, 413–416 (2017)

    Article  CAS  Google Scholar 

  28. V.R. Voller, M. Cross, N.C. Markatos, International journal for numerical methods in engineering 24, 271–284 (1987)

    Article  Google Scholar 

  29. A.D. Brent, V.R. Voller, K.T.J. Reid, Numerical Heat Transfer, Part A Applications 13, 297–318 (1988)

    Google Scholar 

  30. P.R. Chakraborty, International Communications in Heat and Mass Transfer 81, 183–189 (2017)

    Article  CAS  Google Scholar 

  31. M.N. Ozisik: Boundary Value Problems of Heat Conduction, Courier Corporation, 1989.

Download references

Acknowledgments

The authors acknowledge the support received from the Ministry of New and Renewable Energy (MNRE), Govt. of India sponsored project on Establishment of Centre of Excellence in Solar Thermal Research and Education (Project No.: MNRE/ECESTRE/20110007) at IIT Jodhpur. The authors also acknowledge Dr. Anand K. Plappally (Department of Mechanical Engineering, IIT Jodhpur), Dr. Kirankumar Hiremath (Department of Mathematics, IIT Jodhpur), and Dr. Vidya Sarveswaran (Department of Humanities & Social Sciences, IIT Jodhpur) for providing their critical comments and valuable suggestions during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prodyut R. Chakraborty.

Additional information

Manuscript submitted March 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monde, A.D., Chakraborty, P.R. Prediction of Cooling Curves for Controlled Unidirectional Solidification Under the Influence of Shrinkage: A Semi-analytical Approach. Metall Mater Trans B 49, 3306–3316 (2018). https://doi.org/10.1007/s11663-018-1420-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1420-7

Keywords

Navigation