Skip to main content
Log in

Efficient Recovery of Copper and Cobalt from the Matte–Slag Mixture of ISA Furnace by Injection of Coke and Pyrite

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

During ISA copper smelting process, ISASMELT furnace discharges a large amount of matte and slag mixture and the separation of them has an important influence on the recovery of valuable metals. This paper presented a reduction-sulfurization sedimentation process for recovering copper and cobalt from the matte–slag mixture of ISA furnace. Firstly, matte–slag mixture and traditional static sedimentation slag are characterized to determine their mineral composition and occurrence state. It indicates that Cu is primarily lost in slag in the form of sulfide, while Co is mostly lost in the form of oxide. With coke and pyrite as the reducing agent and vulcanizing agent, an orthogonal laboratory experiment was conducted to determine the effects of the smelting temperature and additive dosage on the recovery process. The optimum slag cleaning conditions were found to be: a coke dosage of 2 pct, a pyrite dosage of 2 pct, and a smelting temperature of 1260 °C lasting for 2 hours. In order to improve on the low utilization ratio of additives associated with the industrial sedimentation process, an innovative additive introducing method was put forward which enables the additives to mix and react with slag more adequately. A powder injection device was purpose-made to inject additives into molten slag in dispersion state, and a laboratory experiment was carried out to simulate this process. By injecting 2 pct coke and 2 pct pyrite, the contents of Cu and Co in cleaned slag decreased to 0.46 and 0.01 pct, respectively. It proves that the injection of additives into molten slag is an effective method to recover Cu and Co from the matte–slag mixture of ISA furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 1. R. Matusewicz and E. Mounsey: JOM, 1998, vol. 50, pp. 51-52.

    Article  Google Scholar 

  2. 2. P. Vernon and S. Burks: J. S. Afr. Inst. Min. Metall., 1997, vol. 97, pp. 89-102.

    CAS  Google Scholar 

  3. 3. Z.Z. He, J.Q. Qi: Modern Copper Metallurgy, Science Press, Beijing, BJ, 2003, pp. 289-95.

    Google Scholar 

  4. 4. C. Arslan and F. Arslan: Hydrometallurgy, 2002, vol. 67, pp. 1-7.

    Article  CAS  Google Scholar 

  5. 5. R. Moskalyk and A. Alfantazi: Miner. Eng., 2003, vol. 16, pp. 893-919.

    Article  CAS  Google Scholar 

  6. 6. P.K. Gbor, V. Mokri, and C.Q. Jia: J. Environ. Sci. Health A, 2000, vol. 35, pp. 147-67.

    Article  Google Scholar 

  7. 7. H. Chikashi: Southern Africa Pyrometallurgy, Johannesburg, SA, March 2011, pp. 185-98.

    Google Scholar 

  8. 8. E. Rudnik, L. Burzyńska, and W. Gumowska: Miner. Eng., 2009, vol. 22, pp. 88-95.

    Article  CAS  Google Scholar 

  9. 9. Y. Li, V.G. Papangelakis, and I. Perederiy: Hydrometallurgy, 2009, vol. 97, pp. 185-93.

    Article  CAS  Google Scholar 

  10. 10. A.H. Kaksonen, L. Lavonen, M. Kuusenaho, A. Kolli, H. Närhi, E. Vestola, J.A. Puhakka, and O.H. Tuovinen: Miner. Eng., 2011, vol. 24, pp. 1113-21.

    Article  CAS  Google Scholar 

  11. 11. J.H. Heo, B.S. Kim, and J.H. Park: Metall. Mater. Trans B, 2013, vol. 44, pp. 1352-63.

    Article  Google Scholar 

  12. 12. H. Shen and E. Forssberg: Waste Manage., 2003, vol. 23, pp. 933-49.

    Article  CAS  Google Scholar 

  13. 13. A. Sarrafi, B. Rahmati, H. Hassani, and H. Shirazi: Miner. Eng., 2004, vol. 17, pp. 457-59.

    Article  CAS  Google Scholar 

  14. 14. C. Tang, Y. Li, S. Yang, Y. Chen, L. Ye, and W. Zhang: Nonferr. Met., 2015, vol. 1, pp. 1-5.

    Google Scholar 

  15. 15. D. Busolic, F. Parada, R. Parra, M. Sanchez, J. Palacios, and M. Hino: Min. Process. Extr. Metall., 2011, vol. 120, pp. 32-36.

    Article  CAS  Google Scholar 

  16. 16. X.J. Zhai, N.J. Li, X. Zhang, F. Yan, and L. Jiang: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 2117-21.

    Article  CAS  Google Scholar 

  17. 17. S. Hughes: JOM, 2000, vol. 52, pp. 30-33.

    Article  CAS  Google Scholar 

  18. 18. Y. Li, Y. Chen, C. Tang, S. Yang, J. He, and M. Tang: J. Hazard Mater., 2017, vol. 322, pp. 402-12.

    Article  CAS  Google Scholar 

  19. 19. S. Mikhail and A. Webster: Canadian metallurgical quarterly, 1992, vol. 31, pp. 269-81.

    Article  CAS  Google Scholar 

  20. 20. T. Mitsuo, T. Shoji, Y. Hatta, H. Ono, H. Mori, and T. Kai: Trans. Jap. Inst. Metals, 1982, vol. 23, pp. 768-79.

    Article  Google Scholar 

  21. 21. Y. Okada, S. Fukagawa, K. Maya, H. Ikemiya, and K. Shinme: Rev. Metall., 1994, vol. 91, pp. 923-30.

    Article  CAS  Google Scholar 

  22. 22. W.H. Yang and Y.S. Tarng: J. Mater. Process. Technol., 1998, vol. 84, pp. 122-29.

    Article  Google Scholar 

  23. 23. X. Wu and D.Y. Leung: Appl. Energy, 2011, vol. 88, pp. 3615-24.

    Article  CAS  Google Scholar 

  24. 24. R.K. Roy: Design of experiments using the Taguchi approach: 16 steps to product and process improvement, John Wiley & Sons, New York, NY, 2001, pp. 15-29.

    Google Scholar 

  25. 25. D. M. Byrne and S. Taguchi: Quality Progress, 1987, vol. 20, pp. 19-26.

    Google Scholar 

  26. 26. L. Burzyńska, W. Gumowska, and E. Rudnik: Hydrometallurgy, 2004, vol. 71, pp. 447-55.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51834008, 51874040, 51504022); the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-17-036A2, 230201606500078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jialiang Zhang or Chengyan Wang.

Additional information

Manuscript submitted April 11, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, J., Zhang, J. et al. Efficient Recovery of Copper and Cobalt from the Matte–Slag Mixture of ISA Furnace by Injection of Coke and Pyrite. Metall Mater Trans B 49, 3118–3126 (2018). https://doi.org/10.1007/s11663-018-1396-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1396-3

Keywords

Navigation