Skip to main content
Log in

Thermodynamic Analysis of Deoxidation of Titanium Through the Formation of Rare-Earth Oxyfluorides

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this work, the possibility of the direct removal of oxygen species from metallic Ti through the formation of rare-earth oxyfluorides has been investigated from a thermodynamic viewpoint. The deoxidation limit of β-Ti using rare-earth metals (M: Y, La, Ce, and Nd) as deoxidants was evaluated. It was found that Ti metal with an oxygen concentration of 200 mass ppm or less could be theoretically obtained under the M/MOF/MF3 equilibrium at 1300 K (1027 °C), which suggested a possibility of reducing the oxygen content in Ti below 500 mass ppm utilizing a fluoride-based molten salt. Furthermore, a new deoxidation process, in which oxygen was removed in the form of MOF compounds using Mg deoxidant, was discussed as well. The obtained results revealed that the oxygen content in β-Ti could be theoretically reduced to a level below 1000 mass ppm using a MF3-containing molten salt equilibrated with Mg. Rare-earth metals and their alloys are usually produced by the electrolysis in a fluoride-based molten salt; hence, the modern industrial electrolysis techniques can be potentially utilized for deoxidizing Ti scrap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] T. Suzuki: Titanium. Japan, 2009, vol. 57, pp. 21–9 (in Japanese).

    CAS  Google Scholar 

  2. T.G. Goonan: Flow studies for recycling metal commodities in the United States, S. F. Sibley, ed., U. S. Geological Survey Circular, 1196, 2010, ch. Y, pp. Y1–Y16.

  3. [3] I. Barin: Thermochemical Data of Pure Substance, 3rd ed., Wiley-VCH., Weinheim, Germany, 1995.

    Book  Google Scholar 

  4. [4] T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, USA, 1990.

    Google Scholar 

  5. [5] O. Kubaschewski and W.A. Dench: J. Inst. Met., 1953, vol. 82, pp. 87–91.

    CAS  Google Scholar 

  6. [6] K. Ono, and S. Miyazaki: J. Jpn. Inst. Met., 1985, vol. 49, 871–5 (in Japanese).

    Article  CAS  Google Scholar 

  7. R.L. Fisher: US Patent, No. 4923531A, 1990.

  8. T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono: Mater. Trans. JIM, 1991, vol. 32, pp. 485–88.

    Article  CAS  Google Scholar 

  9. [9] T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono: J. Iron Steel Inst. Jpn., 1991, vol. 77, pp. 93–9 (in Japanese).

    Article  CAS  Google Scholar 

  10. R.L. Fisher: US Patent, No. 5022935A, 1991.

  11. [11] T.H. Okabe, T. Oishi, and K. Ono: J. Alloys Compd., 1992, vol. 184, pp. 43–56.

    Article  CAS  Google Scholar 

  12. [12] T.H. Okabe, T. Oishi, and K. Ono: Met. Trans. B, 1992, vol. 23, pp. 583–90.

    Article  Google Scholar 

  13. [13] T. Yahata, T. Ikeda, and M. Maeda: Met. Trans. B, 1993, vol. 24, pp. 599–604.

    Article  Google Scholar 

  14. R.L. Fisher and S.R. Seagle: US Patent, No. 5211775 A, 1993.

  15. R.L. Fisher and S.R. Seagle: Proceedings of 7th World Conference on Titanium, 1993. vol. 3. pp. 2265–72.

  16. [16] T.H. Okabe, M. Nakamura, T. Oishi, and K. Ono: Met. Trans. B, 1993, vol. 24, pp. 449–55.

    Article  Google Scholar 

  17. M. Nakamura, T.H. Okabe, T. Oishi, and K. Ono: Proceedings of International Symposium on Molten Salt Chemistry and Technology, 1993, pp. 529–40.

  18. [18] G.Z. Chen, D.J. Fray, and T.W. Farthing: Metall. Mater. Trans. B, 2001, vol. 32, 1041–52.

    Article  CAS  Google Scholar 

  19. [19] S.-M. Han, Y.-S. Lee, J.-H. Park, G.-S. Choi, and D.-J. Min: Mater. Trans., 2009, vol. 50, no. 1, pp. 215-8.

    Article  CAS  Google Scholar 

  20. [20] Y. Su, L. Wang, L. Luo, X. Jiang, J. Guo, and H. Fu: Int. J. Hydrogen Energy, 2009, vol. 34, pp. 8958–63.

    Article  CAS  Google Scholar 

  21. [21] J. Reitz, C. Lochbichler, and B. Friedrich: Intermetallics, 2011, vol. 19, pp. 762–8.

    Article  CAS  Google Scholar 

  22. [22] J.-M. Oh, B.-K. Lee, C.-Y. Suh, S.-W. Cho, and J.-W. Lim: Powder Metall., 2012, vol. 55, pp. 402–04.

    Article  CAS  Google Scholar 

  23. [23] J.-M. Oh, K.-M. Roh, B.-K. Lee, C.-Y. Suh, W. Kim, H. Kwon, and J.-W. Lim: J. Alloys Compd., 2014, vol. 593, pp. 61–6.

    Article  CAS  Google Scholar 

  24. [24] J.-M. Oh, H. Kwon, W. Kim, J.-W. Lim: Thin Solid Films, 2014, vol. 551, pp. 98-101.

    Article  CAS  Google Scholar 

  25. [25] K.-M. Roh, C.-Y. Suh, J.-M. Oh, W. Kim, H. Kwon, and J.-W. Lim: Powder Technol., 2014, vol. 253, pp. 266–9.

    Article  CAS  Google Scholar 

  26. [26] M. Bartosinski, S. Hassan-Pour, B. Friedrich, S. Ratiev, A. Ryabtsev: Mater. Sci. Eng., 2016, vol. 143, 012009.

    Google Scholar 

  27. [27] J.-M. Oh, I.-H. Choi, C.-Y. Suh, H. Kwon, J.-W. Lim, and K.-M. Roh: Met. Mater. Int., 2016, vol. 22, no. 3, pp. 488–92.

    Article  CAS  Google Scholar 

  28. [28] J.-M. Oh, K.-M. Roh, J.-W. Lim: Int. J. Hydrogen Energy, 2016, vol. 41, pp. 23033–41.

    Article  CAS  Google Scholar 

  29. [29] S.-J. Kim, J.-M. Oh, and J.-W. Lim: Met. Mater. Int., 2016, vol. 22, no. 4, pp. 658–62.

    Article  CAS  Google Scholar 

  30. [30] Y. Zhang, Z.Z. Fang, Y. Xia, Z. Huang, H. Lefler, T. Zhang, P. Sun, M.L. Free, and J. Guo: Chem. Eng. J., 2016, vol. 286, pp. 517–27.

    Article  CAS  Google Scholar 

  31. [31] Y. Zhang, Z.Z. Fang, P. Sun, T. Zhang, Y. Xia, C. Zhou, Z. Huang: J. Am. Ceram. Soc., 2016, vol. 138, pp. 6916–9.

    CAS  Google Scholar 

  32. [32] T.H. Okabe, Y. Hamanaka, and Y. Taninouchi: Faraday Discuss., 2016, vol. 190, pp. 109-26.

    Article  CAS  Google Scholar 

  33. [33] Y. Taninouchi, Y. Hamanaka, and T.H. Okabe: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3394-404.

    Article  Google Scholar 

  34. [34] Y. Xia, Z.Z. Fang, P. Sun, Y. Zhang, T. Zhang, and M. Free: J. Mater. Sci., 2017, vol. 52, pp. 4120–8.

    Article  CAS  Google Scholar 

  35. [35] Y. Xia, Z.Z. Fang, Y. Zhang, H. Lefler, T. Zhang, P. Sun, and M. Free: Mater. Trans., 2017, vol. 58, no. 3, pp. 355–60.

    Article  CAS  Google Scholar 

  36. [36] Y. Zhang, Z.Z. Fang, Y. Xia, P. Sun, B.V. Devener, M. Free, H. Lefler, S. Zheng: Chem. Eng. J., 2017, vol. 52, pp. 299–310.

    Article  Google Scholar 

  37. [37] B.M. Moon, J.H. Seo, H.J. Lee, K.H. Jung, J.H. Park, and H.D. Jung: J. Alloys Compd., 2017, vol. 727, pp.931–9.

    Article  CAS  Google Scholar 

  38. Y. Waseda and M. Isshiki, eds.: Purification Process and Characterization of Ultra High Purity Metals, 3rd ed., Springer, Berlin, 2001, pp. 3–37.

  39. [39] T.H. Okabe, K. Hirota, E. Kasai, F. Saito, Y. Waseda, and K.T. Jacob: J. Alloys Compd., 1998, vol. 279, pp. 184–91.

    Article  CAS  Google Scholar 

  40. [40] O.N. Carlson, J.A. Haefling, F.A. Schmidt, and F.H. Spedding: J. Electrochem. Soc., 1960, vol. 107, pp. 540–45.

    Article  CAS  Google Scholar 

  41. [41] J.D. Corbett, J.D. Smith, and E. Garcia: J. Less-Common Met., 1986, vol. 115, pp. 343–55.

    Article  CAS  Google Scholar 

  42. T.H. Okabe, K. Hirota, Y. Waseda, and K.T. Jacob: Shigen-to-Sozai (J. Min. Mater. Process. Inst. Jpn.), 1998, vol. 114, pp. 813–18.

  43. H. Sano, M. Tashiro, T. Fujisawa, and C. Yamauchi: Mater. Trans. JIM, 1999, vol. 40, 263–7.

    Article  CAS  Google Scholar 

  44. [44] O. Takeda, K. Nakano, and Y. Sato: Mater. Trans., 2014, vol. 55, pp. 334–41.

    Article  CAS  Google Scholar 

  45. [45] H. Tamamura: J. Surf. Finish. Soc. Jpn, 2009, vol. 60, pp. 474–9 (in Japanese).

    Article  CAS  Google Scholar 

  46. [46] E. Nakamura: Molten Salts, 2015, vol. 58, pp. 119–26 (in Japanese).

    Google Scholar 

  47. [47] L.Z. Zhao, Z.H. Zhang, S.Z. Jiao, and W.H. Liu: Chin. Rare Earths, 1986, vol. 6, pp. 44–9 (in Chinese).

    Google Scholar 

  48. [48] W.P. Deng, X.D. Zheng, and X.D. Chi: Chin. Rare Earths, 1997, vol. 18, pp. 57–60 (in Chinese).

    Google Scholar 

  49. [49] S.M. Pang, S.H. Yan, Z.A. Li, D.H. Cheng, H.L. Xu, and B. Zhao: Chin. J. Rare Met., 2011, vol. 35, pp. 440–50 (in Chinese).

    CAS  Google Scholar 

  50. [50] T.H. Okabe, C. Zheng, and Y. Taninouchi: Metall. Mater. Trans. B, 2018, vol.49, pp. 1056-1066.

    Article  Google Scholar 

  51. [51] V.A. Levitskii and G.M. Balak: Russ. J. Phys. Chem., 1982, vol. 56, pp. 668–73.

    Google Scholar 

  52. [52] Y.Y. Skolis and S.V. Pashina: Russ. J. Phys. Chem., 2001, vol. 75, pp. 1774–9.

    Google Scholar 

  53. Y.R. Hong, R.V. Kumar, and D.A.R. Kay: New Frontiers in Rare Earth Science and Applications (The high temperature thermodynamics of the La-O-F and Ce-O-F systems, Proceedings of International conference on rare earth-development and applications), Academic Press Inc., Orlando, 1985, pp. 1194–1203.

    Chapter  Google Scholar 

  54. O. Takeda, M. Kato, R. Ukai, Y. Sato, and Z. Hongmin: Proceedings of the MMIJ Spring Meeting, 2014 (in Japanese).

  55. [55] C. Ji and Z. Xi: J. Less-Common Mets., 1990, vol. 158, pp. 191–8.

    Article  CAS  Google Scholar 

  56. [56] M.L. Kovba, Y.Y. Skolis, V.M. Vintonyak, and V.A. Levitskii: Dokl. Akad. Nauk SSSR, 1984, vol. 277, pp. 622-5 (in Russian).

    CAS  Google Scholar 

  57. [57] C.J. Rosa: Metall. Trans., 1970, vol. 1, pp. 2517-22.

    CAS  Google Scholar 

  58. [58] O. Knacke, O. Kubaschewski, and K. Hesselman: Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1991.

    Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Professors Hongmin Zhu and Osamu Takeda at Tohoku University for their valuable comments and helpful suggestions. This work was financially supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research (S) (KAKENHI Grant No. 26220910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-ki Taninouchi.

Additional information

Manuscript submitted May 3, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okabe, T.H., Taninouchi, Yk. & Zheng, C. Thermodynamic Analysis of Deoxidation of Titanium Through the Formation of Rare-Earth Oxyfluorides. Metall Mater Trans B 49, 3107–3117 (2018). https://doi.org/10.1007/s11663-018-1386-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1386-5

Keywords

Navigation