Skip to main content
Log in

Dissolution Behavior of Iron and Steel Materials in Liquid Magnesium

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dissolution of metallic elements from Fe and steel materials into pure liquid Mg was investigated with the aim of improving control of impurities in Mg during processes such as Mg-alloy production and Ti smelting. Pure Mg was melted between 1073 and 1323 K (800 and 1050 °C) for 24 to 96 hours in closed crucibles made of pure Fe, low-carbon steel, or austenitic stainless steel SUS316. From the experiments using the pure Fe crucible, the relationship between the solubility of Fe in liquid Mg [Csol,Fe (mass pct)] and temperature [T (K)] was determined to be log(Csol,Fe) = − 3.67 × 103/T + 2.48 (± 0.06), from which the standard Gibbs energy of Fe dissolution in liquid Mg was evaluated. The amount of Fe dissolved from low-carbon steel was the same as that from pure Fe. From SUS316, not only Fe but also Cr and Ni dissolved into liquid Mg; the Fe and Cr concentrations in liquid Mg did not change significantly over time, whereas the Ni concentration increased monotonically. Preferential Ni dissolution resulted in a Ni-poor layer on the SUS316 surface. Finally, using the experimental data of Fe dissolution from low-carbon steel, the Fe contamination route in the current Ti smelting process, where a large amount of Mg is used as a reducing agent, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.E. Friedrich and B.L. Mordike, eds.: Magnesium Technology: Metallurgy, Design Data, Applications. Springer, Berlin, 2006.

    Google Scholar 

  2. Roskill Information Services: Magnesium Metal: Global Industry, Markets & Outlook, 12th Edn, 2016, Roskill Information Services, London, 2016.

    Google Scholar 

  3. AA Nayeb-Hashemi, JB Clark, LJ Swartzendruber (1985) Bull Alloy Phase Diagrams 6(3):235-238.

    Article  CAS  Google Scholar 

  4. F. Habashi, ed.: Handbook of Extractive Metallurgy, VCH Verlagsgesellschaft mbH, Weinheim, 1997.

    Google Scholar 

  5. H. Kusamichi, J. Iseki, A. Moriya, A. Kanai, T. Nishimura, H. Kanayama, and T. Kusamichi: Titanium Industry in Japan and Its New Technologies, AGNE Gijutsu Center, Tokyo, 1996 (in Japanese).

    Google Scholar 

  6. J.D. Hanawalt, C.E. Nelson, and J.A. Peloubet: Trans. AIME, 1942, vol. 147, pp. 273-299.

    Google Scholar 

  7. ASTM Standards: ASTM B93/B93M-15.

  8. T. Suziki and T. Kaneko: The Latest Technological Trend of Rare Metals, CMC Publishing Co. Ltd., Tokyo, 2012, Chap. 6–4, pp. 117–27 (in Japanese).

  9. H. Okamoto (2000) J Phase Equilib 21(2): 209.

    Article  CAS  Google Scholar 

  10. A.A. Nayeb-Hashemi and J.B. Clark (1985) Bull Alloy Phase Diagrams 6(3): 238-244.

    Article  CAS  Google Scholar 

  11. 11. E. Fahrenhorst and W. Bulian: Zeitschrift für Metallkunde, 1941, vol. 33, pp. 31-34 (in German).

    CAS  Google Scholar 

  12. K. Ono (1944) J Jpn Inst Met 8(9): 427-429.

    Article  Google Scholar 

  13. A. Beerwald: Metallwirtschaft, Metallwissenschaft, Metaltechnik, 1944, vol. 23, pp. 404-407 (in German).

    Google Scholar 

  14. G. Siebel: Zeitschrift für Metallkunde, 1948, vol. 39, pp. 22-27 (in German).

    CAS  Google Scholar 

  15. D.W. Mitchell: Trans. AIME, 1948, vol. 175, pp. 570-578.

    Google Scholar 

  16. K. Schwerdtfeger, C.-T. Mutale, and A. Ditze: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 929-930.

    Article  CAS  Google Scholar 

  17. T. Haitani, Y. Tamura, T. Motegi, N. Kono, H. Tamehiro, and E. Sato (2002) J Jpn Inst Light Met, vol. 52(12), pp. 591-597

    Article  CAS  Google Scholar 

  18. O. Kubaschewski: Iron-Binary Phase Diagrams, Springer, New York, 1982, pp. 59-60.

    Google Scholar 

  19. J.L. Haughton and R.J. Payne: J. Inst. Met., 1934, vol. 54, pp. 275-283.

    Google Scholar 

  20. Japanese Industrial Standards: JIS C 2504, 2000.

  21. Japanese Industrial Standards: JIS G 4051, 2016.

  22. Japanese Industrial Standards: JIS G 3131, 2011.

  23. Japanese Industrial Standards: JIS G 3454, 2012.

  24. Japanese Industrial Standards: JIS G 4305, 2012.

  25. Japanese Industrial Standards: JIS G 3459, 2016.

  26. I. Barin: Thermochemical Data of Pure Substances, 3rd ed., VCH Verlagsgesellschaft mbH, Weinheim, 1995.

    Book  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Messrs. Chihiro Taki, Masanori Yamaguchi, Yosuke Inoue, and Meiji Watanabe of Toho Titanium Co., Ltd. for valuable suggestions. The authors thank Messrs. Eiji Shirane and Yoji Iwai of Toho Titanium Co., Ltd. for sample analysis. This paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO). This research was partly supported by the Japan Society for the Promotion of Science (JSPS) through the Grant-in-Aid for Scientific Research (S) (KAKENHI Grant No. 26220910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-ki Taninouchi.

Additional information

Manuscript submitted March 12, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taninouchi, Yk., Nose, K. & Okabe, T.H. Dissolution Behavior of Iron and Steel Materials in Liquid Magnesium. Metall Mater Trans B 49, 3432–3443 (2018). https://doi.org/10.1007/s11663-018-1384-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1384-7

Keywords

Navigation