Skip to main content
Log in

Kinetics of Reduction of Low-Grade Nickel Laterite Ore Using Carbon Monoxide

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Reduction of a low-grade nickel laterite ore with carbon monoxide to produce Fe-Ni alloy was investigated using a thermo-gravimetric analysis (TGA) method. Non-isothermal reduction tests with a fixed heating rate of 10 °C/min from room temperature to 1200 °C were carried out to determine the different reduction stages and reaction products in each state. Combining measured mass losses with theoretically calculated values together with X-ray diffraction analysis, the products of different reduction stages were identified and a reaction path was established. Isothermal reduction tests with temperatures ranging from 500 °C to 1100 °C were performed to evaluate the temperature dependence of the reduction kinetics. Various kinetic models were fitted to the experimental data to further determine the rate-controlling step in the isothermal tests. Then, two groups of TG experiments were carried out to study the effect of CO flow rate and sample mass on the rate of reaction. The results indicated that the reduction rate increases with the increase of the reduction temperature from 500 °C to 1100 °C. More alloy products are formed and the apparent activation energies increase from 8.6 to 14.7 kJ/mol with the increase of the reduction temperature from 700 °C to 1100 °C. Accordingly, it was proposed that diffusion of CO in the gas bulk and through the pores of the laterite ore sample bed are the rate limiting steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Y. Zhang, Q. Guo, G.Y. Wei, L. Meng, L.X. Han, J.K. Qu and T. Qi: Hydrometallurgy, 2015, vol. 157, pp. 149-158.

    Article  CAS  Google Scholar 

  2. C.R.M. Butt and D. Cluzel: Elements, 2013, vol. 9, pp. 123-128.

    Article  CAS  Google Scholar 

  3. B. Li, H. Wang and Y. G. Wei: Miner. Eng., 2011, vol. 24, pp. 1556-1562.

    Article  CAS  Google Scholar 

  4. T. Norgate and S. Jahanshahi: Miner. Eng., 2010, vol. 23, pp. 65-73.

    Article  CAS  Google Scholar 

  5. C.A. Pickles, J. Forster and R. Elliott: Miner. Eng., 2014, vol. 65, pp. 33-40.

    Article  CAS  Google Scholar 

  6. R.R. Moskalyk and A.M. Alfantazi: Miner. Eng., 2002, vol. 15, pp. 593-605.

    Article  CAS  Google Scholar 

  7. G.H. Li, T.M. Shi, M.J. Rao, T. Jiang and Y.B. Zhang: Miner. Eng., 2012, vol. 32, pp. 19-26.

    Article  Google Scholar 

  8. D.Q. Zhu, Y. Cui, K. Vining, S. Hapugoda, J. Douglas, J. Pan and G.L. Zheng: Int. J. Miner. Process., 2012, vol. 106-109, pp. 1-7.

    Google Scholar 

  9. K.S. Abdel-halim, M.H. Khedr, M.I. Nasr and M.S. Abdel-wahab: J. Alloys Compd., 2008, vol. 463, pp. 585-590.

    Article  CAS  Google Scholar 

  10. K.S. Abdel-halim, M. Bahgat and O.A. Fouad: Mater. Sci. Technol. 2013, vol. 22, pp. 1396-1400.

    Article  Google Scholar 

  11. D.W. Yu, M.Q. Zhu, T.A. Utigard and M. Barati: Miner. Eng., 2013, vol. 54, pp. 32-38.

    Article  CAS  Google Scholar 

  12. M.L. Nasr, A.A. Omar, M.H. Khedr and A.A. El-geassy: ISIJ Int., 1995, vol. 35, pp. 1043-1049.

    Article  CAS  Google Scholar 

  13. M. Bahgat, M. Paek and J. Pak: J. Alloys Compd., 2009, vol. 472, pp. 314-318.

    Article  CAS  Google Scholar 

  14. B. Li, Y.G Wei and H. Wang: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 3710-3715.

    Article  CAS  Google Scholar 

  15. Y.K. Wang, Y.G. Wei, B. Li, S.W. Zhou and Z.G. Ding: Chin. J. Process Eng., 2016, vol. 16, pp. 1052-1057.

    CAS  Google Scholar 

  16. S.W. Zhou, Y.G. Wei, B. Li, H. Wang, B.Z. Ma and C.Y. Wang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 145-153.

    Article  Google Scholar 

  17. J. Kim, G. Dodbiba, H. Tanno, K. Okaya, S. Matsuo and T. Fujita: Miner. Eng., 2010, vol. 23, pp. 282-288.

    Article  CAS  Google Scholar 

  18. W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak and W. Maniukiewicz: Appl. Catal. A- Gen, 2007, vol. 326, pp. 17-27.

    Article  CAS  Google Scholar 

  19. A. Pineau, N. Kanari and I. Gaballah: Thermochim. Acta, 2006, vol. 447, pp. 89-100.

    Article  CAS  Google Scholar 

  20. A.A. El-geassy, M.I. Nasr and M.M. Hessien: ISIJ Int., 1996, vol. 36, pp. 640-649.

    Article  CAS  Google Scholar 

  21. J.M. Pang, P.M. Guo, P.Zhao, C.Z. Cao and D.W. Zhang: J. Iron Steel Res. Int., 2009, vol. 16, pp. 7-11.

    Article  CAS  Google Scholar 

  22. Q. Li, B. Li, Y.G. Wei, S.W. Zhou and H. Wang: Chin. J. Rare Met., 2016, vol. 40, pp. 485-491.

    Google Scholar 

  23. S. Kachi, K. Momiyama and S. Shimizu: J. Phys. Soc. Jpn., 1963, vol. 18, pp. 106-116.

    Article  Google Scholar 

  24. H. Park and V. Sahajwalla: ISIJ Int., 2014, vol. 54, pp. 49-55.

    Article  CAS  Google Scholar 

  25. S. Vyazovkin and C.A. Wight: Thermochim. Acta, 1999, vol. 340-341, pp. 53-68.

    Article  Google Scholar 

  26. K.M. Hamdy: ISIJ Int., 2000, vol. 40, pp. 309-314.

    Article  Google Scholar 

  27. S.Nasr and K.P. Plucknett: Energy Fuels, 2014, vol. 28, pp. 1387-1395.

    Article  CAS  Google Scholar 

  28. J.O. Park, H.S. Kim and S.M. Jung: Miner. Eng., 2015, vol. 71, pp. 205-215.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided from the National Natural Science Foundation of China (Project Nos. 51304091 and U1302274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Additional information

Manuscript submitted March 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Ding, Z., Wei, Y. et al. Kinetics of Reduction of Low-Grade Nickel Laterite Ore Using Carbon Monoxide. Metall Mater Trans B 49, 3067–3073 (2018). https://doi.org/10.1007/s11663-018-1367-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1367-8

Keywords

Navigation