Skip to main content
Log in

Entrapment of Inclusions by Solidified Hooks at the Subsurface of Ultra-Low-Carbon Steel Slab

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To understand the mechanism for the entrapment of non-metallic inclusions by curved hooks beneath the surface of continuous casting slabs, the etching of the slab, the observation of hooks and the detection of inclusions on sections vertical and parallel to the slab surface were performed. The location of inclusions and hooks was revealed, and forces acting on the inclusion below a hook were analyzed. Inclusions gathered more below the curved hook than in the overflow zone above the hook. From the observation of hooks and inclusions on sections vertical to the slab surface, the number density of 3 to 5 μm inclusions in the hook zone and no-hook zone was very close, while the number density of > 10 μm inclusions in the hook zone was larger than that in the no-hook zone. From the observation on sections parallel to the slab surface, > 20 μm inclusions were located near the hook line more than in other regions, and the number density of inclusions in the hook zone was more than that in the no-hook zone. The apparent friction coefficient dominated the critical capturing size of inclusions from the solidification front, and the deflection angle, flow velocity, sulfur content and solidification velocity had influences on the size range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Q. Zhang, L. Wang and X. Wang: ISIJ Int., 2006, vol. 46, pp. 1421-26.

    Article  CAS  Google Scholar 

  2. A. Kumar, S.K. Choudhary and S.K. Ajmani: ISIJ Int., 2012, vol. 52, pp. 2305-07.

    Article  CAS  Google Scholar 

  3. L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-91.

    Article  CAS  Google Scholar 

  4. T. Miyake, M. Morishita, H. Nakata and M. Kokita: ISIJ Int., 2006, vol. 46, pp. 1817-22.

    Article  CAS  Google Scholar 

  5. H. Esaka, Y. Kuroda, K. Shinozuka and M. Tamura: ISIJ Int., 2004, vol. 44, pp. 682-90.

    Article  CAS  Google Scholar 

  6. H. Shibata, H. Yin, S. Yoshinaga, T. Emi and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 149-56.

    Article  CAS  Google Scholar 

  7. A.V. Catalina, S. Mukherjee and D. Stefanescu: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2559-68.

    Article  CAS  Google Scholar 

  8. D. Stefanescu and A. Catalina: ISIJ Int., 1998, vol. 38, pp. 503-05.

    Article  CAS  Google Scholar 

  9. Y. Awajiya, J. Kubota and S. Takeuchi: AISTech 2005 Iron and Steel Technology Conf. Proc., Kinki, JP, The Association for Iron and Steel Technology (AIST), Warrendale, PA, 2005. vol. II pp. 65–75.

  10. X. Deng, L. Li, X. Wang, Y. Ji, C. Ji and G. Zhu: Int. J. Mine. Metall. Mater., 2014, vol. 21, pp. 531-43.

    Article  CAS  Google Scholar 

  11. J. Sengupta, B.G. Thomas, H. Shin, G. Lee and S. Kim: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1597-1611.

    Article  CAS  Google Scholar 

  12. T. Emi, H. Nakato, Y. Iida, K. Emoto, R. Tachibana, T. Imai and H. Bada: Proc. Nat. Open Hearth and Basic Oxygen Steel Conf., 1978. vol. 61, pp. 350–60.

  13. H. Yamamura, Y. Mizukami and K. Misawa: ISIJ Int., 1996, vol. 36, pp. S223-S26.

    Article  Google Scholar 

  14. E. Takeuchi and J. Brimacombe: Metall. Trans. B, 1984, vol. 15B, pp. 493-509.

    Article  CAS  Google Scholar 

  15. E. Takeuchi and J. Brimacombe: Metall. Trans. B, 1985, vol. 16, pp. 605-25.

    Article  CAS  Google Scholar 

  16. E. Szekeres: Iron Steel Eng., 1996, vol. 73, pp. 29-37.

    CAS  Google Scholar 

  17. J. Sengupta, H. Shin, B.G. Thomas and S. Kim: Acta Mater., 2006, vol. 54, pp. 1165-73.

    Article  CAS  Google Scholar 

  18. G. Lee, B.G. Thomas, S. Kim, H. Shin, S. Baek, C. Choi, D. Kim and S. Yu: Acta Mater., 2007, vol. 55, pp. 6705-12.

    Article  CAS  Google Scholar 

  19. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 707-25.

    Article  CAS  Google Scholar 

  20. C. Cicutti and R. Boeri: ISIJ Int., 2001, vol. 41, pp. 311-13.

    Article  CAS  Google Scholar 

  21. H. Yamamura and Y. Mizukami: CAMP-ISIJ, 1991, vol. 4, pp. 1250.

    Google Scholar 

  22. G.V. Voort: Mater. Charact., 1995, vol. 35, pp. 135-37.

    Article  Google Scholar 

  23. Y. Ren, Y. Wang, S. Li, L. Zhang, X. Zuo, S.N. Lekakh and K. Peaslee: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1291-1303.

    Article  Google Scholar 

  24. G. Lee, H. Shin, S. Kim, S. Kim, W. Choi and B.G. Thomas: Ironmaking Steelmaking, 2009, vol. 36, pp. 39-49.

    Article  CAS  Google Scholar 

  25. K. Mukai and M. Zeze: Steel Res. Int., 2003, vol. 74, pp. 131-38.

    Article  CAS  Google Scholar 

  26. K. Mukai and W. Lin: Braz. Arch. Biol. Techn., 1994, vol. 55, pp. 257-62.

    Google Scholar 

  27. K. Mukai and W. Lin: Tetsu- to- Hagane, 1994, vol. 80, pp. 533-38.

    Article  CAS  Google Scholar 

  28. T. Yokoyama, Y. Ueshima, K. Sasai, Y. Mizukami, H. Kakimi and M. Kato: Tetsu- to- Hagane, 1997, vol. 83, pp. 563-68.

    Article  CAS  Google Scholar 

  29. L. Zhang, J. Aoki and B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37, pp. 361-79.

    Article  CAS  Google Scholar 

  30. K. Mukai, M. Zeze and T. Morohoshi: Mater. Science Forum, 2006, vol. 508, pp. 211-220.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Key R&D Program of China (2017YFB0304000&2017YFB0304001), National Natural Science Foundation of China (Grant Nos. 51725402, 51504020 and 51704018), the Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-15-001C2, FRF-TP-15-067A1, FRF-TP-17-039A1 and FRF-BD-17-010A), Guangxi Key Research and Development Plan (Grant No. AB17129006), National Postdoctoral Program for Innovative Talents (Grant No. BX201700028), Young Elite Scientists Sponsorship Program by CAST (No. 2017QNRC001), China Postdoctoral Science Foundation (No. 2017M620016), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality steel Consortium (HQSC) and Green Process Metallurgy and Modeling (GPM2) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ren or Lifeng Zhang.

Additional information

Manuscript submitted February 5, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ren, Y., Zhang, L. et al. Entrapment of Inclusions by Solidified Hooks at the Subsurface of Ultra-Low-Carbon Steel Slab. Metall Mater Trans B 49, 3186–3199 (2018). https://doi.org/10.1007/s11663-018-1366-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1366-9

Keywords

Navigation