Skip to main content

Advertisement

Log in

Solidification of Calcium Ferrite Melt Using Ultrasonic Vibration: Effect and Mechanism

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Calcium ferrite (CF) is a very important binder phase in iron ore sintering processes. To improve the microstructure of CF, power ultrasound was introduced during its solidification process, and the effect of immersion depth of ultrasonic probe (IDUP) on the properties of CF was investigated in detail. The results indicated that the microstructure of CF was greatly refined; the grain size decreased from 2864 μm without ultrasonic vibration to 841 μm with ultrasonic vibration at an immersion depth of 30 mm. Without ultrasonic vibration, the density and compressive strength of CF slag were 3904 kg/m3 and 38.3 MPa, respectively. When the IDUP was increased from 10 to 30 mm, the density and compressive strength of CF increased from 4049 to 4452 kg/m3 and 52.5 to 87.3 MPa, respectively. Further, the reducibility of CF was examined. The reduction time, at the same reduction rate, decreased from 347 minutes without ultrasonic vibration to 200 minutes with ultrasonic vibration at an IDUP of 30 mm. The rate-limiting step was obviously improved, which may be attributable to the grain refinement of CF and composition segregation in the slag. In general, the properties of CF were greatly improved due to the cavitation and acoustic streaming of ultrasonic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Fernández-González, I. Ruiz-Bustinza, J. Mochón, C. González-Gasca and L. F. Verdeja: Ext. Met. Rev., 2017, vol. 38, pp. 215-27.

    Article  Google Scholar 

  2. R. Wei, X. Lv, Z. Yue: Metall. Mater. Trans. B, 2017, vol. 48, pp. 733-42.

    Article  CAS  Google Scholar 

  3. X. Mao, Z. You, Y. Zhang, Z. Fan, G. Li and T. Jiang, J. Cent. South Univ., 2014, vol. 21, pp. 3043-48.

    Article  CAS  Google Scholar 

  4. C. Leonelli, T.J. Mason: Chem. Eng. Process., 2010, vol. 49, pp. 885-900.

    Article  CAS  Google Scholar 

  5. I. Tudela, V. Sáez, M.D. Esclapez, M.I. Díez-García, P. Bonete, J. González-García: Ultrason. Sonochem., 2014, vol. 21, pp. 909-19.

    Article  CAS  Google Scholar 

  6. I. Nishida: Ultrason. Sonochem., 2004, vol. 11, pp. 423-28.

    CAS  Google Scholar 

  7. W.-Y. Jeon, Y.-B. Choi, H.-H. Kim: Ultrason. Sonochem., 2018, vol. 43, pp. 73-79.

    Article  CAS  Google Scholar 

  8. S.H.M.C. Monteiro, E.K. Silva, V.O. Alvarenga, J. Moraes, M.Q. Freitas, M.C. Silva, R.S.L. Raices, A.S. Sant’Ana, M.A.A. Meireles, A.G. Cruz: Ultrason. Sonochem., 2018, vol. 42, pp. 1-10.

    Article  CAS  Google Scholar 

  9. S. Gupta, D. Scott, R. Prabha and M. Ashokkumar: Fuel, 2017, vol. 208, pp. 430-38.

    Article  CAS  Google Scholar 

  10. M. A. Khayamian, M. Baniassadi and M. Abdolahad: Ultrason. Sonochem., 2018, vol. 41, pp. 619-25.

    Article  CAS  Google Scholar 

  11. C. M. Lee, P. Palaniandy and I. Dahlan: Environ. Earth Sci., 2017, vol. 76, pp. 611-30.

    Article  Google Scholar 

  12. S. I. Nikitenko, L. Venault, R. Pflieger, T. Chave, I. Bisel and P. Moisy: Ultrason. Sonochem., 2010, vol. 17, pp. 1033-40.

    Article  CAS  Google Scholar 

  13. I. Tzanakis, G. S. B. Lebon, D. G. Eskin and K. Pericleous: Mater. Design, 2016, vol. 90, pp. 979-83.

    Article  CAS  Google Scholar 

  14. V. Sharma, P.M. Pandey: Ultrasonics, 2016, vol. 70, pp. 172-82.

    Article  CAS  Google Scholar 

  15. X. Zhang, J. Kang, S. Wang, J. Ma and T. Huang: Ultrason. Sonochem., 2015, vol. 27, pp. 307-15.

    Article  Google Scholar 

  16. T. Yuan, S. Kou, Z. Luo, Acta Mater., 2016, vol. 106, pp. 144-54.

    Article  CAS  Google Scholar 

  17. F. Wang, D. Eskin, J. Mi, C. Wang, B. Koe, A. King, C. Reinhard, T. Connolley: Acta Mater., 2017, vol. 141, pp. 142-53.

    Article  CAS  Google Scholar 

  18. C. J. Todaro, M. A. Easton, D. Qiu, G. Wang, D. H. StJohn and M. Qian: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5579-90.

    Article  CAS  Google Scholar 

  19. X. Feng, F. Zhao, H. Jia, Y. Li, Y. Yang: Ultrason. Sonochem., 2018, vol. 40, pp. 113-19.

    Article  CAS  Google Scholar 

  20. R. Wei, X. Lv, M. Yang, J. Xu: Ultrason. Sonochem., 2017, vol. 38, pp. 281-88.

    Article  CAS  Google Scholar 

  21. R. Chen, D. Zheng, T. Ma, H. Ding, Y. Su, J. Guo, H. Fu: Sci. Rep., 2017, vol. 7, pp. 41463-78.

    Article  CAS  Google Scholar 

  22. M. Qian, A. Ramirez, A. Das: J. Cryst. Growth, 2009, vol. 311, pp. 3708-15.

    Article  CAS  Google Scholar 

  23. Z. Xu, K. Yasuda, S. Koda: Ultrason. Sonochem., 2013, vol. 20, pp. 452-59.

    Article  CAS  Google Scholar 

  24. J. Klíma, A. Frias-Ferrer, J. González-García, J. Ludvík, V. Sáez and J. Iniesta: Ultrason. Sonochem., 2007, vol. 14, pp. 19-28.

    Article  Google Scholar 

  25. V.S. Sutkar, P.R. Gogate, L. Csoka: Chem. Eng. J., 2010, vol. 158, pp. 290-95.

    Article  CAS  Google Scholar 

  26. Z. Shao, Q. Le, Z. Zhang, J. Cui: Mater. Design, 2011, vol. 32, pp. 4216-24.

    Article  CAS  Google Scholar 

  27. R. Auerbach: Experientia, 1948, vol. 4, pp. 473-74.

    Article  CAS  Google Scholar 

  28. M. Kidd and D. R. Gaskell: Metall. Mater. Trans. B, 1986, vol. 17, pp. 771-76.

    Article  Google Scholar 

  29. G. Basi and A. Apostolov, Godishnik na Sofiiskiya Universiteit, 1971, vol. 63, pp. 177-87. (in Bulgarian).

    Google Scholar 

  30. B. Wang, D. Tan, T.L. Lee, J.C. Khong, F. Wang, D. Eskin, T. Connolley, K. Fezzaa, J. Mi: Acta Mater., 2018, vol. 144, pp. 505-15.

    Article  CAS  Google Scholar 

  31. B. Bergman: J. Am. Ceram. Soc., 1986, vol. 69, pp. 608-11.

    Article  CAS  Google Scholar 

  32. A. V. Sandwijk and K. Koopmans: Sci. Ceram., 1979, vol. 10, pp. 403-09.

    Google Scholar 

  33. R. Wei, X. Lv and M. Yang: 147th TMS Annual Meeting & Exhibition, Pheonix, 2018, pp. 115–21.

  34. Z. Shao, Q. Le, Z. Zhang and J. Cui, T. Nonferr. Metal. Soc., 2011, vol. 21, pp. 2476-83.

    CAS  Google Scholar 

  35. K. Kerboua and O. Hamdaoui: Ultrason. Sonochem., 2017, vol. 38, pp. 174-88.

    Article  CAS  Google Scholar 

  36. S. Wang, J. Kang, X. Zhang and Z. Guo: Ultrasonics, 2018, vol. 83, pp. 26-32.

    Article  CAS  Google Scholar 

  37. C. E. Loo and B. G. Ellis, ISIJ Int., 2014, vol. 54, pp. 19-28.

    Article  CAS  Google Scholar 

  38. C. Ding, X. Lv, G. Li, C. Bai, S. Xuan, K. Tang and Y. Chen: Isij Int., 2017, vol. 57, pp. 1181-90.

    Article  CAS  Google Scholar 

  39. C. Ding, X. Lv, S. Xuan, X. Lv, G. Li, K. Tang: Adv. Powder Technol., 2017, vol. 28, pp. 2503-13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was performed with the financial support of the Natural Science Fund outstanding youth project funding (No. 51522403) and Chongqing Youth Science and Technology Talent Training Project (cstc2014kjrc-qnrc90001). Ruirui Wei acknowledges the financial support from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Lv.

Additional information

Manuscript submitted April 4, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, R., Lv, X., Yang, M. et al. Solidification of Calcium Ferrite Melt Using Ultrasonic Vibration: Effect and Mechanism. Metall Mater Trans B 49, 2658–2666 (2018). https://doi.org/10.1007/s11663-018-1351-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1351-3

Keywords

Navigation