Skip to main content
Log in

Critical Evaluation and Thermodynamic Optimization of the Li2O-Al2O3 and Li2O-MgO-Al2O3 Systems

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The thermodynamic and phase diagram data of the Li2O-Al2O3 and Li2O-MgO-Al2O3 systems were critically evaluated and optimized to obtain a set of consistent Gibbs energy functions for all phases in the systems. The LiAl5O8-MgAl2O4 spinel solid solution was modeled with the two-sublattice compound energy formalism by considering the cation distribution between the tetrahedral and octahedral sites and excess vacancy in octahedral sites. The liquid phase and monoxide solid solution were also described using the modified quasichemical model with pair approximation and the Bragg–Williams random mixing model, respectively. The thermodynamic models with optimized model parameters enable the reproduction of all reliable thermodynamic and phase diagram as well as spinel structural data in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. W. Jiang, J. Zhang, L. Kovarik, Z. Zhu, L. Price, J. Gigax, E. Castanon, X. Wang, L. Shao and D.J. Senor, J. Nucl. Mater., 2017, vol. 484, pp. 374-81.

    Article  CAS  Google Scholar 

  2. D. Guggi, H.R. Ihle and A. Neubert, Symposium on Fusion Technology, Pergamon Press, Garmisch-Partenkirchen, Germany, 1976, pp. 635-44.

    Book  Google Scholar 

  3. M. Nishikawa, A. Baba and Y. Kawamura, J. Nucl. Mater., 1997, vol. 246, pp. 1-8.

    Article  CAS  Google Scholar 

  4. F. Rosciano, P.P. Pescarmona, K. Houthoofd, A. Persoons, P. Bottke and M. Wilkening, Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 6107-12.

    Article  CAS  Google Scholar 

  5. Z.-K. Fang, Y.-R. Zhu, T.-F. Yi and Y. Xie, ACS Sustain. Chem. Eng., 2016, vol. 4, pp. 1994-2003.

    Article  CAS  Google Scholar 

  6. B. Put, P.M. Vereecken, M.J. Mees, F. Rosciano, L.P. Radu and A. Stesmans, Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 29045-56.

    Article  CAS  Google Scholar 

  7. R. Djenadic, M. Botros and H. Hahn, Solid State Ionics, 2016, vol. 287, pp. 71-76.

    Article  CAS  Google Scholar 

  8. C.V. Chandran and P. Heitjans, Solid-State NMR Studies of Lithium Ion Dynamics Across Materials Classes, in: Annual Reports on NMR Spectroscopy, Academic Press.

  9. M. Raja, G. Sanjeev, T.P. Kumar and A.M. Stephan, Ceram. Int., 2015, vol. 41, pp. 3045-50.

    Article  CAS  Google Scholar 

  10. J.S. Park, X. Meng, J.W. Elam, S. Hao, C. Wolverton, C. Kim and J. Cabana, Chem. Mater., 2014, vol. 26, pp. 3128-34.

    Article  CAS  Google Scholar 

  11. K. Zaghib, A. Mauger, H. Groult, J. Goodenough and C. Julien, Materials, 2013, vol. 6, pp. 1028-49.

    Article  CAS  Google Scholar 

  12. C. Guan and J. Wang, Adv. Sci., 2016, vol. 3, pp. 1500405-23.

    Article  Google Scholar 

  13. S.J. Heo, B. Hu, M.A. Uddin, A. Aphale, A. Hilmi, C.-Y. Yuh, A. Surendranath and P. Singh, J. Electrochem. Soc., 2017, vol. 164, pp. H5086-92.

    Article  CAS  Google Scholar 

  14. [14] K. Takizawa and A. Hagiwara, J. Power Sources, 2002, vol. 109, pp. 127-35.

    Article  CAS  Google Scholar 

  15. [15] S. Terada, I. Nagashima, K. Higaki and Y. Ito, J. Power Sources, 1998, vol. 75, pp. 223-29.

    Article  CAS  Google Scholar 

  16. [16] L. Suski and M. Tarniowy, J. Mater. Sci., 2001, vol. 36, pp. 5119-24.

    Article  CAS  Google Scholar 

  17. [17] E. Antolini, Ceram. Int., 2013, vol. 39, pp. 3463-78.

    Article  CAS  Google Scholar 

  18. [18] C. Yang, G. Wen and P. Tang, Steel Res. Int., 2016, vol. 87, pp. 880-89.

    Article  CAS  Google Scholar 

  19. [19] T. Wu, Q. Wang, S. He, J. Xu, X. Long and Y. Lu, Steel Res. Int., 2012, vol. 83, pp. 1194-1202.

    Article  CAS  Google Scholar 

  20. [20] J.-W. Cho, K. Blazek, M. Frazee, H. Yin, J.H. Park and S.-W. Moon, ISIJ Int., 2013, vol. 53, pp. 62-70.

    Article  Google Scholar 

  21. [21] B. Lu, K. Chen, W. Wang and B. Jiang, Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1496-1509.

    Article  Google Scholar 

  22. [22] X.J. Fu, G.H. Wen, P. Tang, Q. Liu and Z.Y. Zhou, Ironmak. Steelmak., 2014, vol. 41, pp. 342-41.

    Article  Google Scholar 

  23. [23] T. Ávalos-Rendón, J. Casa-Madrid and H. Pfeiffer, J. Phys. Chem. A, 2009, vol. 113, pp. 6919-23.

    Article  Google Scholar 

  24. [24] T. Ávalos-Rendón, V.H. Lara and H. Pfeiffer, Ind. Eng. Chem. Res., 2012, vol. 51, pp. 2622-30.

    Article  Google Scholar 

  25. [25] N.S. Kulkarni, T.M. Besmann and K.E. Spear, J. Am. Ceram. Soc., 2008, vol. 91, pp. 4074-83.

    Article  CAS  Google Scholar 

  26. [26] Q. Guan, X. Chen, T. Gao, C. Xiao, L. Zhao, J. He and X. Long, J. Nucl. Mater., 2015, vol. 465, pp. 170-76.

    Article  CAS  Google Scholar 

  27. [27] S.Q. Wu, Z.F. Hou and Z.Z. Zhu, Comput. Mater. Sci., 2009, vol. 46, pp. 221-24.

    Article  CAS  Google Scholar 

  28. [28] E.S. Blaakmeer, F. Rosciano and E.R.H. van Eck, J. Phys. Chem. C, 2015, vol. 119, pp. 7565-77.

    Article  CAS  Google Scholar 

  29. [29] M.J. Mees, G. Pourtois, F. Rosciano, B. Put, P.M. Vereecken and A. Stesmans, Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 5399-5406.

    Article  CAS  Google Scholar 

  30. [30] S.C. Jung and Y.-K. Han, J. Phys. Chem. Lett., 2013, vol. 4, pp. 2681-85.

    Article  CAS  Google Scholar 

  31. [31] H.J. Byker, I. Eliezer, N. Eliezer and R.A. Howald, J. Phys. Chem., 1979, vol. 83, pp. 2349-55.

    Article  CAS  Google Scholar 

  32. [32] L.P. Cook and E.R. Plante, Ceram. Trans., 1992, vol. 27, pp. 193-222.

    CAS  Google Scholar 

  33. [33] C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer and M.A. Van Ende, CALPHAD, 2016, vol. 54, pp. 35-53.

    Article  CAS  Google Scholar 

  34. [34] B. Konar, M.A. Van-Ende and I.H. Jung, J. Eur. Ceram. Soc., 2017, vol. 37, pp. 2189-2207.

    Article  CAS  Google Scholar 

  35. [35] C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton and S. Petersen, CALPHAD, 2002, vol. 26, pp. 189-228.

    Article  CAS  Google Scholar 

  36. [36] A.D. Pelton and P. Chartrand, Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1355-60.

    Article  CAS  Google Scholar 

  37. [37] A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin and Y. Dessureault, Metall. Mater. Trans. B, 2000, vol. 31B, pp. 651-59.

    Article  CAS  Google Scholar 

  38. B. Konar, D.G. Kim, and I.-H. Jung, J. Eur. Ceram. Soc., 2018, vol. 38, pp. 881-3904.

    Google Scholar 

  39. E. Jak, P. Hayes, A.D. Pelton and S.A. Decterov: Proc VIII Int’l Conf on Molten Slags, Fluxes and Salts, Thermodynamic modelling of the Al 2O3 -CaO-FeO-Fe 2O3 -PbO-SiO 2 -ZnO system with addition of K and Na with metallurgical applications, 2009, pp. 473-490.

  40. D.G. Kim, B. Konar, and I.-H. Jung, Ceram. Int., 2018. https://doi.org/10.1016/j.ceramint.2018.06.099.

    Article  Google Scholar 

  41. [41] W.B. Badger and F.A. Hummel, J. Am. Ceram. Soc., 1985, vol. 68, pp. C46-47.

    CAS  Google Scholar 

  42. [42] E. Ising, Z. Phys., 1925, vol. 31, pp. 253-58.

    Article  CAS  Google Scholar 

  43. [43] B. Konar, D.-G. Kim and I.-H. Jung, Ceram. Int., 2017, vol. 43, pp. 13055-62.

    Article  CAS  Google Scholar 

  44. [44] I.-H. Jung, S.A. Decterov and A.D. Pelton, J. Phase Equilib. Diffus., 2004, vol. 25, pp. 329-45.

    Article  CAS  Google Scholar 

  45. [45] A.D. Pelton, CALPHAD, 2001, vol. 25, pp. 319-28.

    Article  CAS  Google Scholar 

  46. [46] T.R.N. Kutty and M. Nayak, J. Alloys Compd., 1998, vol. 269, pp. 75-87.

    Article  CAS  Google Scholar 

  47. [47] M. Hillert, B. Jansson and B. Sundman, Z. Metallkd., 1988, vol. 79, pp. 81-87.

    CAS  Google Scholar 

  48. [48] S.A. Degterov, A.D. Pelton, E. Jak and P.C. Hayes, Metall. Mater. Trans. B, 2001, vol. 32B, pp. 643-57.

    Article  CAS  Google Scholar 

  49. [49] I.-H. Jung, Solid State Ionics, 2006, vol. 177, pp. 765-77.

    Article  CAS  Google Scholar 

  50. [50] I.-H. Jung, S. Decterov and A.D. Pelton, J. Am. Ceram. Soc., 2005, vol. 88, pp. 1921-28.

    Article  CAS  Google Scholar 

  51. [51] I.-H. Jung, S.A. Decterov and A.D. Pelton, J. Phys. Chem. Solids, 2004, vol. 65, pp. 1683-95.

    Article  CAS  Google Scholar 

  52. [52] S. Chatterjee and I.-H. Jung, J. Eur. Ceram. Soc., 2014, vol. 34, pp. 1611-21.

    Article  CAS  Google Scholar 

  53. [53] P. Wu, G. Eriksson and A.D. Pelton, J. Am. Ceram. Soc., 1993, vol. 76, pp. 2065-75.

    Article  CAS  Google Scholar 

  54. [54] F.Y. Galakhov, Izv. Akad. Nauk SSSR, Ser. Khim., 1959, vol. 4, pp. 575-81.

    Google Scholar 

  55. [55] D.W. Strickler and R. Roy, J. Am. Ceram. Soc., 1961, vol. 44, pp. 225-30.

    Article  CAS  Google Scholar 

  56. [56] R.K. Datta and R. Roy, J. Am. Ceram. Soc., 1963, vol. 46, pp. 388-90.

    Article  CAS  Google Scholar 

  57. [57] Y. Ikeda, H. Ito, G. Matsumoto and H. Hayashi, J. Nucl. Mater., 1981, vol. 97, pp. 47-58.

    Article  CAS  Google Scholar 

  58. G.K. Duncan, Phase diagram studies of the beta-aluminas, in: Department of Chemistry, University of Aberdeen, Aberdeen, 1985.

  59. [59] E.N. Rao and J. Ghose, Mater. Res. Bull., 1986, vol. 21, pp. 55-60.

    Article  CAS  Google Scholar 

  60. [60] A.M. Lejus and R. Collongues, Compt. Rend., 1962, vol. 254, pp. 2005-07.

    CAS  Google Scholar 

  61. [61] I. Levin and D. Brandon, J. Am. Ceram. Soc., 1998, vol. 81, pp. 1995-2012.

    Article  CAS  Google Scholar 

  62. [62] G. Lambotte and P. Chartrand, J. Chem. Thermodyn., 2013, vol. 57 pp. 306-34.

    Article  CAS  Google Scholar 

  63. [63] F. Stewner and R. Hoppe, Z. Anorg. Allg. Chem., 1971, vol. 380, pp. 241-43.

    Article  CAS  Google Scholar 

  64. [64] O.L. Andreev, G.V. Zelyutin, Z.S. Martem’yanova and N.N. Batalov, Inorg. Mater., 2001, vol. 37, pp. 177-79.

    Article  CAS  Google Scholar 

  65. [65] M. Marezio and J.P. Remeika, J. Chem. Phys., 1966, vol. 44, pp. 3143-44.

    Article  CAS  Google Scholar 

  66. [66] M.W. Chase: NIST-JANAF Thermochemical Tables, American Institute of Physics for the National Institute of Standards and Technology, Washington, DC, Woodbury, 1998

    Google Scholar 

  67. [67] P. Tarte, Compt. Rend., 1962, vol. 254, pp. 2008-10.

    CAS  Google Scholar 

  68. [68] G.K. Duncan and A.R. West, Solid State Ionics, 1983, vol. 9-10, pp. 259-64.

    Article  Google Scholar 

  69. [69] C. Kroger and E. Fingas, Z. Anorg. Allg. Chem., 1935, vol. 224, pp. 289-304.

    Article  CAS  Google Scholar 

  70. T.F. Fedorov and F.I. Shamrai, Primenenie Vakuuma v Met., Akad. Nauk S.S.S.R., Inst. Met. im. A. A. Baikova, 1960, pp. 137-42.

  71. [71] A. La Ginestra, M. Lo Jacono and P. Porta: J. Therm. Anal., 1972, vol. 4, pp. 5-17.

    Article  Google Scholar 

  72. [72] S.K. Rakshit, Y.P. Naik, S.C. Parida, S. Dash, Z. Singh, B.K. Sen and V. Venugopal, J. Solid State Chem., 2008, vol. 181, pp. 1402-12.

    Article  CAS  Google Scholar 

  73. [73] E.G. King, J. Am. Chem. Soc., 1955, vol. 77, pp. 3189-90.

    Article  CAS  Google Scholar 

  74. G.W. Hollenberg and D.E. Baker, HEDL-SA-2674-FP, 84th Annual Meeting of American Ceramic Society, Cincinnati, 1982.

  75. [75] A.U. Christensen, K.C. Conway and K.K. Kelley, Bur. Mines Rep. Invest., 1960, vol. 5565, pp. 7.

    Google Scholar 

  76. [76] M. Asou, T. Terai and Y. Takahashi, J. Nucl. Mater., 1990, vol. 175, pp. 42-46.

    Article  CAS  Google Scholar 

  77. [77] H. Kleykamp, J. Nucl. Mater., 1999, vol. 270, pp. 372-75.

    Article  CAS  Google Scholar 

  78. I. Barin, La-Lu2O3, in: Thermochemical data of pure substances, Wiley-VCH Verlag GmbH, 2008, pp. 925–92.

  79. [79] S.-G. Ma, Y.-H. Shen, T. Gao and P.-H. Chen, Int. J. Hydrogen Energy, 2015, vol. 40, pp. 3762-70.

    Article  CAS  Google Scholar 

  80. D.L. Hildenbrand, L.P. Thread, W.F. Hall, F. Ju, F.S. La Viola and N.D. Potter, An experimental program for obtaining the thermodynamic properties of propellant combustion products, in: U-2055, Ford Motor Company, 1963.

  81. [81] E.R. Plante and L.P. Cook, Adv. Ceram., 1990, vol. 27, pp. 129-45.

    CAS  Google Scholar 

  82. [82] A.F. Venero and E.F. Westrum Jr., J. Chem. Thermodyn., 1975, vol. 7, pp. 693-702.

    Article  CAS  Google Scholar 

  83. N.D. Potter, M.H. Boyer, F. Ju, D.L. Hildenbrand and E. Murad, Thermodynamic properties of propellant combustion products, in, Philco-Ford Corp., 1970, pp. 160.

  84. [84] D.-G. Kim, M.-A. Van Ende, P. Hudon and I.-H. Jung, J. Non-Cryst. Solids, 2017, vol. 471, pp. 51-64.

    Article  CAS  Google Scholar 

  85. [85] E. Kordes and E. Rottig, Z. Anorg. Allg. Chem., 1951, vol. 264, pp. 34-47.

    Article  CAS  Google Scholar 

  86. E. Kordes, Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., 1935, vol. 91, pp. 193-228.

    CAS  Google Scholar 

  87. [87] E.J.W. Verwey and E.L. Heilmann, J. Chem. Phys., 1947, vol. 15, pp. 174-80.

    Article  CAS  Google Scholar 

  88. [88] P.B. Braun, Nature, 1952, vol. 170, pp. 1123.

    Article  CAS  Google Scholar 

  89. [89] R. Famery, F. Queyroux, J.-C. Gilles and P. Herpin, J. Solid State Chem., 1979, vol. 30, pp. 257-63.

    Article  CAS  Google Scholar 

  90. [90] L. Debray and A. Hardy, Compt. Rend., 1960, vol. 251, pp. 725-26.

    CAS  Google Scholar 

  91. N.T. Melamed, F.D.S. Barros, P.J. Viccaro and J.O. Artman, Phys. Rev. B, 1972, vol. 5, pp. 3377-87

    Article  Google Scholar 

  92. [92] R.C. Doman and R.N. McNally, J. Mater. Sci., 1973, vol. 8, pp. 189-91.

    Article  CAS  Google Scholar 

  93. [93] L.T. Menzheres, N.P. Kotsupalo and A.S. Berger, Z. Neorg. Khim., 1978, vol. 23, pp. 2804-09.

    CAS  Google Scholar 

  94. [94] G. Izquierdo and A.R. West, J. Am. Ceram. Soc., 1980, vol. 63, pp. 227.

    Article  CAS  Google Scholar 

  95. S. Hafner and F. Laves, Ordnung / Unordnung und Ultrarotabsorption III. Die Systeme MgAl2O4–Al2O3 und MgAl2O4–LiAl5O8, Z. Kristallogr.- Crys. Mat., vol. 115, 1961, pp. 321-30.

  96. [96] R.K. Datta and R. Roy, Amer. Mineral., 1968, vol. 53, pp. 1456-75.

    CAS  Google Scholar 

  97. [97] Y. Mordekovitz and S. Hayun, J. Am. Ceram. Soc., 2016, vol. 99, pp. 2786-94.

    Article  CAS  Google Scholar 

  98. [98] M. Marezio, Acta Crystallogr., 1965, vol. 19, pp. 396-400.

    Article  CAS  Google Scholar 

  99. [99] A.T. Dinsdale, CALPHAD, 1991, vol. 15, pp. 317-425.

    Article  CAS  Google Scholar 

  100. O. Kubaschewski, C.B. Alcock and P.J. Spencer: Materials Thermochemistry, Pergamon Press., 1993

Download references

Acknowledgments

Financial support from Tata Steel Europe, Posco, Hyundai Steel, Nucor Steel, RioTinto Iron and Titanium, Nippon Steel and Sumitomo Metals Corp., JFE Steel, Voestalpine Stahl, RHI, Schott AG, and the Natural Sciences and Engineering Research Council of Canada are gratefully acknowledged. One of the authors (B. Konar) would also like to thank the McGill Engineering Doctorate Award (MEDA) program of McGill University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ho Jung.

Additional information

Manuscript submitted July 31, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konar, B., Van Ende, MA. & Jung, IH. Critical Evaluation and Thermodynamic Optimization of the Li2O-Al2O3 and Li2O-MgO-Al2O3 Systems. Metall Mater Trans B 49, 2917–2944 (2018). https://doi.org/10.1007/s11663-018-1349-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1349-x

Keywords

Navigation