Archaeological Arsenical Bronzes and Equilibrium in the As-Cu System

Abstract

Understanding the effects of impurities, segregation, undercooling, and solidification velocity is necessary to reconstruct prehistoric As-Cu alloy manufacturing processes and practices. Moreover, these alloys often contain a wide variety of minor and trace elements such that the binary As-Cu equilibrium phase diagram does not adequately represent arsenical bronze artifacts as-cast in ancient molds. Furthermore, the variable cooling rates present in as-cast alloys of predominantly arsenic and copper, due to the thermal properties of differing mold materials, would have had profound effects on the formation of inversely segregated arsenic. Alloys with 1 to 15 wt pct arsenic were prepared and studied using differential thermal analysis, metallography, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. Equilibrium diagrams were established and the potential influence of trace elements discussed. A new liquidus curve for the equilibrium diagram in this compositional range, measuring slightly higher in temperature, was established.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Adapted and modified from Ref. [2]

Fig. 3

References

  1. 1.

    M. Mödlinger and B. Sabatini: J. Archaeol. Sci., 2016, vol. 74, pp. 60–74.

    Article  Google Scholar 

  2. 2.

    B. R. Subramanian and D. E. Laughlin: Bull. Alloy Phase Diagrams, 1988, vol. 9, p. 605.

    Article  Google Scholar 

  3. 3.

    B. Pei, B. Björkman, B. Jansson and B. Sundman: Zeitschrift für Metallkunde, 1994, 85, 178–184.

    CAS  Google Scholar 

  4. 4.

    D. M. Stefanescu: Science and Engineering of Casting Solidification, Springer, New York, 2015.

    Google Scholar 

  5. 5.

    P. Bray, A. Cuenod, C. Gosden, P. Hommel, R. Liu and A.M. Pollard: Journal of Archaeological Science, 2015, vol. 56, p. 202.

    CAS  Article  Google Scholar 

  6. 6.

    H. Lechtman: J. Field Archaeol., 1996, vol.23, pp. 477–514.

    Google Scholar 

  7. 7.

    H. Lechtman and S. Klein: J. Archaeol. Sci., 1999, vol. 26, pp. 497–526.

    Article  Google Scholar 

  8. 8.

    T. Rehren, L. Boscher and E. Pernicka: J. Archaeol. Sci., 2012, vol. 39, pp. 1717–1727.

    CAS  Article  Google Scholar 

  9. 9.

    Edward C. Rollason: Metallurgy for Engineers, Edward Arnold & Co, London, 1949.

    Google Scholar 

  10. 10.

    E.G. Garrison: A History of engineering and technology: Artful methods, 2nd edn. CRC Press, Boca Raton, 1998.

    Google Scholar 

  11. 11.

    J. Günter, K.J.A. Kundig, J.A. Konrad: Copper: Its Trade, Manufacture, Use, and Environmental Status, Materials Park, Ohio, 1999.

    Google Scholar 

  12. 12.

    A. Nayar: The Metals Databook, McGraw-Hill Companies, New York, 1997.

    Google Scholar 

  13. 13.

    A. Giumla-Mair: The metal of the moon goddess, Surface Engineering, 2008, vol. 24, pp.110-117.

    Article  Google Scholar 

  14. 14.

    F. Pereira, R.J.C. Silva, A. Soares, M. Araújo and J. Cardoso: Metallurgical production from the Chalcolithic settlement of Moita de Ladra, Portugal, Materials and Manufacturing Processes,2016, pp. 1-11.

    Google Scholar 

  15. 15.

    H. Lechtman: Historical Metallurgy, 1985, vol. 19, p. 141.

    Google Scholar 

  16. 16.

    Paul D. Budd: A Metallographic Investigation of Eneolithic Arsenical Copper. University of Bradford, Bradford, 1991.

    Google Scholar 

  17. 17.

    Paul D. Budd: Historical Metallurgy, 1991, vol.25, p. 99.

    CAS  Google Scholar 

  18. 18.

    P.J. Northover: in Old Work Archaeometallurgy A. Hauptmann, E. Pernicka and G.A. Wagner, eds., Deutschen Bergbau-Museums, Bochum 1989, pp. 111–18.

  19. 19.

    J. R. Marechal: Métaux, Corrosion, Industries, 1958, vol. 33, p. 377.

    Google Scholar 

  20. 20.

    T. Carozzani, C.-A. Gandin, H. Digonnet, M. Bellet, K. Zaidat, and Y. Fautrelle: Metallurgical and Materials Transactions A, 2013, vol. 44(2), pp. 873–87.

    CAS  Article  Google Scholar 

  21. 21.

    G. Quillet, A. Ciobanas, P. Lehmann, and Y. Fautrelle: Int. J. Heat Mass Transf., 2007, vol. 50, pp. 654–66.

    CAS  Article  Google Scholar 

  22. 22.

    ASM International: ASM Handbook vol. 15: Casting, 9th edn, ASM International, Materials Park, OH, 1988.

  23. 23.

    Fleming, M.C. Solidification Processing. McGraw-Hill, London, 1974.

    Google Scholar 

  24. 24.

    Glicksman, M.E. Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts. Springer, New York, 2010.

    Google Scholar 

  25. 25.

    F. Pereira, R. Silva, A. Monge Soares, M. Araújo, M. Oliveira, R. Martins and N. Schell: Microscopy and Microanalysis, 2015, vol. 21, pp. 1413–1419.

    CAS  Article  Google Scholar 

  26. 26.

    J.A. Dantzig, and M. Rappaz: Solidification. Taylor & Francis, Lausanne, 2009.

    Google Scholar 

  27. 27.

    A. S. Wadhwa, and H. S. Dhaliwal: A Textbook of Engineering Material and Metallurgy. Laxmi Publications, Bangalore, 2008.

    Google Scholar 

  28. 28.

    W. Boettinger, and U.R. Kattner: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1779–94.

    Article  Google Scholar 

  29. 29.

    A. I. Fenandez-Calvo, A. Niklas, and J. Lacaze: Materials Science Forum, Trans Tech Publications Inc., 2010, vol. 649, pp. 493–98.

  30. 30.

    W. Gutt and A. J. Majumdar: In: R. C. Mackenzie (ed). Differential Thermal Analysis Vol. II, Academic Press, New York, 1972, pp. 97–117.

    Google Scholar 

  31. 31.

    R. Ferro and S. Delfino: in Corso di Metodologie Calorimetriche e Termoanalitiche, San Donato Milanese, 15 giugno 198, G.D. Gatta and A. Lucci, eds., Piccin, Padova, 1981, p. 53.

  32. 32.

    L. K. Bigelow and J. H. Chen: Metallurgical Transactions B, 1976, vol. 7, pp. 661–669.

    Article  Google Scholar 

  33. 33.

    Y. T. Zhu and J. H. Devletian: J. Phase Equilib., 1994, vol. 15/1, pp. 37–41.

    CAS  Article  Google Scholar 

  34. 34.

    J. J. Murray, J. B. Taylor, L. D. Calvert, Yu Wang, E. J. Gabe, J. G. Despault: Journal of the Less Common Metals, 1976, vol. 46, pp. 311–320.

    CAS  Article  Google Scholar 

  35. 35.

    Q. Han and R. Schmid – Fetzer: Materials Science and Engineering, 1994, B22, pp. 141–148.

    Article  Google Scholar 

  36. 36.

    J. Sun and D. J. Singh: Journal of Applied Physics, 2017, 121, 015101.

    Article  Google Scholar 

  37. 37.

    J.D. Verhoeven, F.A. Schmidt, E.D. Gibson, and W.A. Spitzig: JOM, 1986, vol. 38, pp. 20–24.

    CAS  Article  Google Scholar 

  38. 38.

    P. R. Subramanian and D. E. Laughlin: Bull. Alloy Phase Diagr., 1989, 10, pp. 652–655.

    CAS  Article  Google Scholar 

  39. 39.

    P. R. Subramanian, D. J. Chakrabarti and D. E. Laughlin, Phase Diagrams of Binary Copper Alloys, ASM International, Materials Park, OH, 1994.

    Google Scholar 

  40. 40.

    X. Liu, W. Huang, Y. Guo, S. Yang, Y. Lu, and C. Wang: J. Phase Equilib. Diffus. 2015, vol. 36(1), pp. 28–38.

    Article  Google Scholar 

  41. 41.

    J. Gröbner, D. Mirkovic, M. Ohno, and R. Schmid-Fetzer: Journal of Phase Equilibria and Diffusion (JPEDAV), 2005, vol. 26, pp. 234–239.

    Article  Google Scholar 

  42. 42.

    S. Uhland, H. N. Lechtman & L. Kaufman: Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2001, vol. 25, pp. 109–124.

    CAS  Article  Google Scholar 

  43. 43.

    R. Krause: Studien zur kupfer- und frühbronzezeitlichen Metallurgie zwischen Karpatenbecken und Ostsee, Vorgeschichtliche Forschungen 24, Rahden, 2003.

  44. 44.

    N.V. Ryndina and L.V. Konkova: Sovetskaya Archeol., 1982, vol. 2, pp. 30–42.

    Google Scholar 

  45. 45.

    B. J. Sabatini: JOM, 2015, vol. 67, pp. 2984-2992.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support provided by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions, Grant Agreement No. 656244.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marianne Mödlinger.

Additional information

Manuscript submitted December 1, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mödlinger, M., Cziegler, A., Macció, D. et al. Archaeological Arsenical Bronzes and Equilibrium in the As-Cu System. Metall and Materi Trans B 49, 2505–2513 (2018). https://doi.org/10.1007/s11663-018-1322-8

Download citation

Keywords

  • Arsenical Bronze
  • Inverse Segregation
  • Mold Material
  • Ancient Mould
  • Differential Thermal Analysis (DTA)