Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2505–2513 | Cite as

Archaeological Arsenical Bronzes and Equilibrium in the As-Cu System

  • Marianne MödlingerEmail author
  • Andreas Cziegler
  • Daniele Macció
  • Holger Schnideritsch
  • Benjamin Sabatini
Technical Publication


Understanding the effects of impurities, segregation, undercooling, and solidification velocity is necessary to reconstruct prehistoric As-Cu alloy manufacturing processes and practices. Moreover, these alloys often contain a wide variety of minor and trace elements such that the binary As-Cu equilibrium phase diagram does not adequately represent arsenical bronze artifacts as-cast in ancient molds. Furthermore, the variable cooling rates present in as-cast alloys of predominantly arsenic and copper, due to the thermal properties of differing mold materials, would have had profound effects on the formation of inversely segregated arsenic. Alloys with 1 to 15 wt pct arsenic were prepared and studied using differential thermal analysis, metallography, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. Equilibrium diagrams were established and the potential influence of trace elements discussed. A new liquidus curve for the equilibrium diagram in this compositional range, measuring slightly higher in temperature, was established.



The authors acknowledge financial support provided by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions, Grant Agreement No. 656244.


  1. 1.
    M. Mödlinger and B. Sabatini: J. Archaeol. Sci., 2016, vol. 74, pp. 60–74.CrossRefGoogle Scholar
  2. 2.
    B. R. Subramanian and D. E. Laughlin: Bull. Alloy Phase Diagrams, 1988, vol. 9, p. 605.CrossRefGoogle Scholar
  3. 3.
    B. Pei, B. Björkman, B. Jansson and B. Sundman: Zeitschrift für Metallkunde, 1994, 85, 178–184.Google Scholar
  4. 4.
    D. M. Stefanescu: Science and Engineering of Casting Solidification, Springer, New York, 2015.CrossRefGoogle Scholar
  5. 5.
    P. Bray, A. Cuenod, C. Gosden, P. Hommel, R. Liu and A.M. Pollard: Journal of Archaeological Science, 2015, vol. 56, p. 202.CrossRefGoogle Scholar
  6. 6.
    H. Lechtman: J. Field Archaeol., 1996, vol.23, pp. 477–514.Google Scholar
  7. 7.
    H. Lechtman and S. Klein: J. Archaeol. Sci., 1999, vol. 26, pp. 497–526.CrossRefGoogle Scholar
  8. 8.
    T. Rehren, L. Boscher and E. Pernicka: J. Archaeol. Sci., 2012, vol. 39, pp. 1717–1727.CrossRefGoogle Scholar
  9. 9.
    Edward C. Rollason: Metallurgy for Engineers, Edward Arnold & Co, London, 1949. Google Scholar
  10. 10.
    E.G. Garrison: A History of engineering and technology: Artful methods, 2nd edn. CRC Press, Boca Raton, 1998.Google Scholar
  11. 11.
    J. Günter, K.J.A. Kundig, J.A. Konrad: Copper: Its Trade, Manufacture, Use, and Environmental Status, Materials Park, Ohio, 1999.Google Scholar
  12. 12.
    A. Nayar: The Metals Databook, McGraw-Hill Companies, New York, 1997.Google Scholar
  13. 13.
    A. Giumla-Mair: The metal of the moon goddess, Surface Engineering, 2008, vol. 24, pp.110-117.CrossRefGoogle Scholar
  14. 14.
    F. Pereira, R.J.C. Silva, A. Soares, M. Araújo and J. Cardoso: Metallurgical production from the Chalcolithic settlement of Moita de Ladra, Portugal, Materials and Manufacturing Processes,2016, pp. 1-11.Google Scholar
  15. 15.
    H. Lechtman: Historical Metallurgy, 1985, vol. 19, p. 141.Google Scholar
  16. 16.
    Paul D. Budd: A Metallographic Investigation of Eneolithic Arsenical Copper. University of Bradford, Bradford, 1991.Google Scholar
  17. 17.
    Paul D. Budd: Historical Metallurgy, 1991, vol.25, p. 99.Google Scholar
  18. 18.
    P.J. Northover: in Old Work Archaeometallurgy A. Hauptmann, E. Pernicka and G.A. Wagner, eds., Deutschen Bergbau-Museums, Bochum 1989, pp. 111–18.Google Scholar
  19. 19.
    J. R. Marechal: Métaux, Corrosion, Industries, 1958, vol. 33, p. 377.Google Scholar
  20. 20.
    T. Carozzani, C.-A. Gandin, H. Digonnet, M. Bellet, K. Zaidat, and Y. Fautrelle: Metallurgical and Materials Transactions A, 2013, vol. 44(2), pp. 873–87.CrossRefGoogle Scholar
  21. 21.
    G. Quillet, A. Ciobanas, P. Lehmann, and Y. Fautrelle: Int. J. Heat Mass Transf., 2007, vol. 50, pp. 654–66.CrossRefGoogle Scholar
  22. 22.
    ASM International: ASM Handbook vol. 15: Casting, 9th edn, ASM International, Materials Park, OH, 1988.Google Scholar
  23. 23.
    Fleming, M.C. Solidification Processing. McGraw-Hill, London, 1974.Google Scholar
  24. 24.
    Glicksman, M.E. Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts. Springer, New York, 2010.Google Scholar
  25. 25.
    F. Pereira, R. Silva, A. Monge Soares, M. Araújo, M. Oliveira, R. Martins and N. Schell: Microscopy and Microanalysis, 2015, vol. 21, pp. 1413–1419.CrossRefGoogle Scholar
  26. 26.
    J.A. Dantzig, and M. Rappaz: Solidification. Taylor & Francis, Lausanne, 2009.CrossRefGoogle Scholar
  27. 27.
    A. S. Wadhwa, and H. S. Dhaliwal: A Textbook of Engineering Material and Metallurgy. Laxmi Publications, Bangalore, 2008.Google Scholar
  28. 28.
    W. Boettinger, and U.R. Kattner: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1779–94.CrossRefGoogle Scholar
  29. 29.
    A. I. Fenandez-Calvo, A. Niklas, and J. Lacaze: Materials Science Forum, Trans Tech Publications Inc., 2010, vol. 649, pp. 493–98.Google Scholar
  30. 30.
    W. Gutt and A. J. Majumdar: In: R. C. Mackenzie (ed). Differential Thermal Analysis Vol. II, Academic Press, New York, 1972, pp. 97–117.Google Scholar
  31. 31.
    R. Ferro and S. Delfino: in Corso di Metodologie Calorimetriche e Termoanalitiche, San Donato Milanese, 15 giugno 198, G.D. Gatta and A. Lucci, eds., Piccin, Padova, 1981, p. 53.Google Scholar
  32. 32.
    L. K. Bigelow and J. H. Chen: Metallurgical Transactions B, 1976, vol. 7, pp. 661–669.CrossRefGoogle Scholar
  33. 33.
    Y. T. Zhu and J. H. Devletian: J. Phase Equilib., 1994, vol. 15/1, pp. 37–41.CrossRefGoogle Scholar
  34. 34.
    J. J. Murray, J. B. Taylor, L. D. Calvert, Yu Wang, E. J. Gabe, J. G. Despault: Journal of the Less Common Metals, 1976, vol. 46, pp. 311–320.CrossRefGoogle Scholar
  35. 35.
    Q. Han and R. Schmid – Fetzer: Materials Science and Engineering, 1994, B22, pp. 141–148.CrossRefGoogle Scholar
  36. 36.
    J. Sun and D. J. Singh: Journal of Applied Physics, 2017, 121, 015101.CrossRefGoogle Scholar
  37. 37.
    J.D. Verhoeven, F.A. Schmidt, E.D. Gibson, and W.A. Spitzig: JOM, 1986, vol. 38, pp. 20–24.CrossRefGoogle Scholar
  38. 38.
    P. R. Subramanian and D. E. Laughlin: Bull. Alloy Phase Diagr., 1989, 10, pp. 652–655.CrossRefGoogle Scholar
  39. 39.
    P. R. Subramanian, D. J. Chakrabarti and D. E. Laughlin, Phase Diagrams of Binary Copper Alloys, ASM International, Materials Park, OH, 1994.Google Scholar
  40. 40.
    X. Liu, W. Huang, Y. Guo, S. Yang, Y. Lu, and C. Wang: J. Phase Equilib. Diffus. 2015, vol. 36(1), pp. 28–38.CrossRefGoogle Scholar
  41. 41.
    J. Gröbner, D. Mirkovic, M. Ohno, and R. Schmid-Fetzer: Journal of Phase Equilibria and Diffusion (JPEDAV), 2005, vol. 26, pp. 234–239.CrossRefGoogle Scholar
  42. 42.
    S. Uhland, H. N. Lechtman & L. Kaufman: Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2001, vol. 25, pp. 109–124.CrossRefGoogle Scholar
  43. 43.
    R. Krause: Studien zur kupfer- und frühbronzezeitlichen Metallurgie zwischen Karpatenbecken und Ostsee, Vorgeschichtliche Forschungen 24, Rahden, 2003.Google Scholar
  44. 44.
    N.V. Ryndina and L.V. Konkova: Sovetskaya Archeol., 1982, vol. 2, pp. 30–42.Google Scholar
  45. 45.
    B. J. Sabatini: JOM, 2015, vol. 67, pp. 2984-2992.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Marianne Mödlinger
    • 1
    Email author
  • Andreas Cziegler
    • 2
  • Daniele Macció
    • 3
  • Holger Schnideritsch
    • 4
  • Benjamin Sabatini
    • 5
    • 6
  1. 1.IRAMAT-CRP2A - UMR 5060, CNRS, Université Bordeaux Montaigne, Maison de l’archéologiePessacFrance
  2. 2.Lehrstuhl für Gießereikunde, Montanuniversität LeobenLeobenAustria
  3. 3.Dipartimento di Chimica e Chimica Industriale, Università degli Studi di GenovaGenovaItaly
  4. 4.Lehrstuhl Nichteisenmetallurgie, Montanuniversität LeobenLeobenAustria
  5. 5.Department of Materials Science & EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  6. 6.USTC Archaeometry LaboratoryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations