Advertisement

Design and Fabrication of Pellets for Magnesium Production by Carbothermal Reduction

  • Boris A. Chubukov
  • Aaron W. Palumbo
  • Scott C. Rowe
  • Mark A. Wallace
  • Kevin Y. Sun
  • Alan W. Weimer
Article

Abstract

For carbothermal reduction (CTR) to be an economic and clean process for magnesium metal production, operational challenges must be overcome. Strong and reactive precursor pellets are necessary to effectively and selectively produce Mg(g) from any feedstock. In this study, the effects of ore (magnesia and dolime), carbon (petroleum coke, charcoal, algal char, and carbon black), and binder (organic and inorganic) on pellet strength and reactivity, product yield and purity, and reduction selectivity were analyzed. Theoretically and experimentally, the CTR of dolime (MgO·CaO) favored MgO reduction over CaO reduction; however, with enough carbon and heat, both oxides could be reduced. CaO carbothermal reduction produced CaC2 and Ca(g). The selectivity to CaC2 remained constant (7 ± 4 pct) for all C/MgO·CaO ratios analyzed, while the selectivity to Ca(g) increased (5 pct → 40 pct) when C/MgO·CaO was increased from 0.5 to 2.0. As the overall metal yield decreased (77.6 pct → 59.7 pct) with increasing CaO reduction (38.2 pct → 78.1 pct), Ca(g) reverted faster than Mg(g). Heavy metal impurities primarily remained in the residue (< 30 pct volatilized) and, when volatilized, condensed at high temperatures (700 °C to 1450 °C), relative to light metal impurities (350 °C to 1000 °C, > 78 pct volatilized). Organic binders added reducing power to the pellets but produced frail pellets (radial crush strength = 9.1 ± 0.7 N) after pyrolysis, relative to pellets with inorganic binders (15.1 ± 3.2 N). Kinetic parameters were determined for extruded pellets to predict the reaction rate as a continuous function of pressure and temperature.

Notes

Acknowledgments

The authors acknowledge the financial support from the National Science Foundation: Award 1622824, and from the Advanced Research Projects Agency-Energy (ARPA-E) of the US Department of Energy (DOE): Award AR0000404. Dragan Mejic provided machining, welding, and design services for all custom vacuum hardware. Dave Sorenson at Dover Resources provided carbon consulting services.

Conflict of interest

Boris Chubukov, Scott Rowe, and Aaron Palumbo are co-founders of Big Blue Technologies and are working to commercialize magnesium production by carbothermal reduction.

References

  1. 1.
    S. Trang, G. Brooks, P. Witt, M. N. H. Khan, M. Nagle, JOM 2006, vol. 58, pp. 51-55.Google Scholar
  2. 2.
    F. J. Hansgirg, Iron Age 1943, vol. 18, pp. 56-63.Google Scholar
  3. 3.
    D.A. Kramer: USGS Minerals Yearbook, vol. 47, 2005.Google Scholar
  4. 4.
    O Söhnel and J Mareček, Cryst. Res. Technol. 1978, vol. 13, pp. 253-262.Google Scholar
  5. 5.
    C.-B. Yang, Y. Tian, T. Qu, B. Yang, B.-Q. Xu, Y.-N. Dai, J. Magnes. Alloys 2013, vol. 1, pp. 323-329.CrossRefGoogle Scholar
  6. 6.
    S. Wang, G. Bin, Y. Wang, J. Diao, Magnes. Technol. 2014, vol. 2014, pp. 43-47.Google Scholar
  7. 7.
    W.-D. Xie, J. Chen, H. Wang, X. Zhang, X.-D. Peng, and Y. Yang: Rare Met. 2014, pp. 1–6.Google Scholar
  8. 8.
    R. Winand, M. Van Gysel, A. Fontana, L. Segers, and J.C. Carlier: 1990.Google Scholar
  9. 9.
    A Berman and M Epstein, J. Phys. IV 1999, vol. 9, pp. 319–324.Google Scholar
  10. 10.
    Li Rongti, Pan Wei, Masamichi Sano and Jianqiang Li, Thermochim. Acta 2003, vol. 398, pp. 265-267.CrossRefGoogle Scholar
  11. 11.
    ME Galvez, A Frei, G Albisetti, G Lunardi and A Steinfeld, Int. J. Hydrogen Energy 2008, vol. 33, pp. 2880-2890.CrossRefGoogle Scholar
  12. 12.
    Y. Jiang, H.W. Ma and Y.Q. Liu: Advanced Materials Research, Trans Tech Publ, Zürich, 2013, pp 2552-2555.Google Scholar
  13. 13.
    B.A. Chubukov, A.W. Palumbo, S.C. Rowe, M.A. Wallace and A.W. Weimer: Ind. Eng. Chem. Res., 2017, 56 (46), 13602–13609.CrossRefGoogle Scholar
  14. 14.
    I. Hischier, B.A. Chubukov, M.A. Wallace, R.P. Fisher, A.W. Palumbo, S.C. Rowe, A.J. Groehn and A.W. Weimer: Sol. Energy 2016, vol. 139, pp. 389-397.CrossRefGoogle Scholar
  15. 15.
    B.A. Chubukov, A.W. Palumbo, S.C. Rowe, I. Hischier, A.J. Groehn and A.W. Weimer: Thermochim. Acta 2016, vol. 636, pp. 23-32.CrossRefGoogle Scholar
  16. 16.
    Leon H Prentice, Michael W Nagle, Timothy R D Barton, Steven Tassios, Benny T Kuan, Peter J Witt and Ken K Constanti-Carey: Magnesium Technology 2012. 2012, Wiley, New York, pp. 29-35.CrossRefGoogle Scholar
  17. 17.
    Tao Qu, Bin Yang, Yang Tian and Yongnian Dai, Magnesium Technology 2015. 2015, Wiley, New York, pp. 55-59.Google Scholar
  18. 18.
    Mohammad Nusheh, Hossein Yoozbashizadeh, Masoud Askari, Naoaki Kuwata, Junichi Kawamura, Junya Kano, Fumio Saito, Hidekazu Kobatake and Hiroyuki Fukuyama, ISIJ Int. 2010, vol. 50, pp. 668-672.CrossRefGoogle Scholar
  19. 19.
    BA Chubukov, AW Palumbo, SC Rowe, MA Wallace and AW Weimer: Ind. Eng. Chem. Res. 2017, vol. 56, pp. 13602-13609.CrossRefGoogle Scholar
  20. 20.
    OP Solonenko, AV Smirnov, AE Chesnokov, VA Poluboyarov and AA Zhdanok, Thermophysics and Aeromechanics 2016, vol. 23, pp. 451-459.CrossRefGoogle Scholar
  21. 21.
    JR Scheffe, AH McDaniel, MD Allendorf and AW Weimer: Energy Environ. Sci. 2013, vol. 6, pp. 963-973.CrossRefGoogle Scholar
  22. 22.
    CW Bale, E Bélisle, P Chartrand, SA Decterov, G Eriksson, AE Gheribi, K Hack, I-H Jung, Y-B Kang and J Melançon, Calphad 2016, vol. 54, pp. 35-53.CrossRefGoogle Scholar
  23. 23.
    TD Taulbee, DP Patil, RQ Honaker and BK Parekh, Int. J. Coal Prep. Util. 2009, vol. 29, pp. 1-22.CrossRefGoogle Scholar
  24. 24.
    A.P. Zambrano, C. Takano, M.B. Mourão, and S.Y. Tagusagawa: IJBHT, 2013.Google Scholar
  25. 25.
    S.D. Dunmead and A.W. Weimer: US5756410 A, 1998.Google Scholar
  26. 26.
    HM Rietveld: J. Appl. Crystallogr. 1969, vol. 2, pp. 65-71.CrossRefGoogle Scholar
  27. 27.
    ASTM: Standard Test Method for Single Pellet Crush Strength of Formed Catalysts and Catalyst Carriers ASTM D4179-11, ASTM International, West Conshohocken, PA, 2011, http://www.astm.org.
  28. 28.
    Li Rongti, Pan Wei and Masamichi Sano, Metall. Mater. Trans. B 2003, vol. 34B, pp. 433-437.CrossRefGoogle Scholar
  29. 29.
    W.B. Rogatz: US1422135, 1922.Google Scholar
  30. 30.
    Li Rongti, Pan Wei, Masamichi Sano and Jianqiang Li, Thermochim. Acta 2002, vol. 390, pp. 145-151.CrossRefGoogle Scholar
  31. 31.
    R. Winand, M. Van Gysel, A. Fontana, L. Segers, and J.C. Carlier: Trans Inst Min Metall (SectionC), 1990, pp. 105–11.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Boris A. Chubukov
    • 1
  • Aaron W. Palumbo
    • 1
    • 2
  • Scott C. Rowe
    • 1
  • Mark A. Wallace
    • 1
    • 2
  • Kevin Y. Sun
    • 1
  • Alan W. Weimer
    • 1
  1. 1.Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderUSA
  2. 2.Big Blue Technologies LLCWestminsterUSA

Personalised recommendations