Skip to main content
Log in

Formation of Nitrogen Bubbles During Solidification of Duplex Stainless Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The nucleation and growth of nitrogen bubbles for duplex stainless steels are of great significance for the formation mechanism of bubbles during solidification. In the current study, numerical method and theoretical analysis of formula derivation were used to study the formation of nitrogen bubbles during solidification. The critical sizes of the bubble for homogeneous nucleation and heterogeneous nucleation at the solid–liquid interface during solidification were derived theoretically by the classical nucleation theory. The results show that the calculated values for the solubility of nitrogen in duplex stainless steel are in good agreement with the experimental values which are quoted by references: for example, when the temperature T = 1823 K and the nitrogen partial pressure \( P_{{N_{2} }} = 40P^{\varTheta } , \) the calculated value (0.8042 wt pct) for the solubility of Fe-12Cr alloy nitrogen in molten steel is close to the experimental value (0.780 wt pct). Moreover, the critical radii for homogeneous nucleation and heterogeneous nucleation are identical during solidification. On the one hand, with the increasing temperature or the melt depth, the critical nucleation radius of bubbles at the solid–liquid interface increases, but the bubble growth rate decreases. On the other hand, with the decreasing initial content of nitrogen or the cooling rate, the critical nucleation radius of bubbles at the solid–liquid interface increases, but the bubble growth rate decreases. Furthermore, when the melt depth is greater than the critical depth, which is determined by the technological conditions, the change in the Gibbs free energy for the nucleation is not conducive enough to form new bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J-O Nilsson, Materials science and technology 1992, vol. 8, pp. 685-700.

    Article  Google Scholar 

  2. G. Stein and I. Hucklenbroich, Materials and Manufacturing Processes 2004, vol. 19, pp. 7-17.

    Article  Google Scholar 

  3. Hans Berns, ISIJ international 1996, vol. 36, pp. 909-914.

    Article  Google Scholar 

  4. S. Xiong, H. Zeng, Y. Cao, and Q. Wang, J. Chongqing Univ.: Eng. Ed. 2014, vol. 13, pp. 11–16.

    Google Scholar 

  5. AG Svyazhin, LM Kaputkina, VE Bazhenov, Z Skuza, E Siwka and VE Kindop, The Physics of Metals and Metallography 2015, vol. 116, pp. 552-561.

    Article  Google Scholar 

  6. Y-H Park, J-W Kim, S-K Kim, Y-D Lee and Z-H Lee, Metallurgical and Materials Transactions B 2003, vol. 34, pp. 313-320.

    Article  Google Scholar 

  7. R. Arola, J. Wendt, and E. Kivineva, In Materials science forum (Trans Tech Publ: 1999), pp 297-302.

  8. M.R. Ridolfi and O. Tassa, Intermetallics 2003, vol. 11, pp. 1335-1338.

    Article  Google Scholar 

  9. S.-H. Yang and Z.-H. Lee, Materials Science and Engineering: A 2006, vol. 417, pp. 307-314.

    Article  Google Scholar 

  10. K. Li, J. Liu, J. Zhang and S. Shen, Metallurgical and Materials Transactions B 2017, vol. 48, pp. 2136-2146.

    Article  Google Scholar 

  11. H. C. Zhu, Z. H. Jiang, H.B. Li, S.C. Zhang, G.H. Liu, J.H. Zhu, P.B. Wang, B.B. Zhang and G.W. Fan: Metall. Mater. Trans. B 2017, vol. 48B, pp. 2493–2503.

  12. X.H. Huang: Principal of Iron and Steel Metallurgy, 3rd ed., Metallurgical Indusry Oress, Beijing, 2002, pp.91-95.

    Google Scholar 

  13. D. R. Anson, R. J. Pomfret and A. Hendry, Isij International 1996, vol. 36, pp. 750-758.

    Article  Google Scholar 

  14. G. Balachandran, M. L Bhatia, N. B. Ballal and P. Krishna Rao, Isij International 2001, vol. 41, pp. 1018-1027.

    Article  Google Scholar 

  15. H. Wada and R.D. Pehlke, Metallurgical Transactions B 1978, vol. 9, pp. 441-448.

    Article  Google Scholar 

  16. T. W. Clyne and W. Kurz, Metallurgical Transactions A 1981, vol. 12, pp. 965-971.

    Article  Google Scholar 

  17. Z. Ma and D. Janke, Isij International 2007, vol. 38, pp. 46-52.

    Article  Google Scholar 

  18. PanFe: Ferrum Alloy Thermodynamic Database, CompuTherm, Madison, WI, USA, 2015.

  19. S. L. Chen, S. Daniel, F. Zhang, Y. A. Chang, X. Y. Yan, F. Y. Xie, R. Schmid-Fetzer and W. A. Oates, Calphad-computer Coupling of Phase Diagrams & Thermochemistry 2002, vol. 26, pp. 175-188.

    Article  Google Scholar 

  20. W. G. Whitman, International journal of heat and mass transfer 1962, vol. 5, pp. 429-433.

    Article  Google Scholar 

  21. S.N. Leung, C.B. Park, D. Xu, and H. Li and R. G. Fenton, Industrial & Engineering Chemistry Research 2006, vol. 45, pp. 7823-7831.

    Article  Google Scholar 

  22. Q. Ying: Principal of Steelmaking, 2nd ed., Metallurgical Indusry Oress, Beijing, 1980, pp.179-182.

    Google Scholar 

  23. A.H. Satir and H. K. Feichtinger, Zeitschrift Für Metallkunde 1991, vol. 52, pp. 689-697.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully express their appreciation to the National Natural Science Foundation of China (No. 51474143) and the Shanghai Economic and Information Commission (No. Hu CXY-2013-1) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Additional information

Manuscript submitted October 3, 2017.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, K., Wang, B., Xue, F. et al. Formation of Nitrogen Bubbles During Solidification of Duplex Stainless Steels. Metall Mater Trans B 49, 2011–2021 (2018). https://doi.org/10.1007/s11663-018-1263-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1263-2

Keywords

Navigation