Metallurgical and Materials Transactions B

, Volume 49, Issue 4, pp 1719–1731 | Cite as

Effects of the Cr2O3 Content on the Viscosity of CaO-SiO2-10 Pct Al2O3-Cr2O3 Quaternary Slag

  • Tuo Wu
  • Yanling Zhang
  • Fang Yuan
  • Zhuoqing An


The present study experimentally investigates the effect of Cr2O3 on the viscosity of molten slags. The viscosities of CaO-SiO2-10 pct Al2O3-Cr2O3 quaternary slags with two different binary basicities (R, basic slag with R = 1.2 and acidic slag with R = 0.8) were measured by the rotating cylindrical method from 1813 K to 1953 K (1540 °C to 1680 °C). The results showed that the viscosity of both types of slag decreased as the Cr2O3 content increased, but the viscosity of acidic slags exhibited a greater decrease. The slags showed good Newtonian behavior at such high temperatures. Cr2O3 could act as a network modifier to simplify the Si-O-Si tetrahedral structure, as verified by the Raman spectral analysis, which was consistent with the decreasing trend of viscosity. The activation energy of viscous flow decreased slightly with increasing Cr2O3, but increasing the basicity seemed to be more effective in decreasing the viscosity than adding Cr2O3.



The authors would like to express their appreciation to the National Natural Science Foundation (No. 51674022) for its financial support of this research work. The authors would also like to acknowledge Dewen Chen, an engineer at the Shanghai Huanao Technology Company, for his significant technical support during this work.


  1. 1.
    K.C. Mills: ISIJ Int., 1993, vol. 33, pp. 148–55.CrossRefGoogle Scholar
  2. 2.
    C. Feng, M. Chu, J. Tang, Y. Tang, and Z. Liu: Steel Res. Int., 2016, vol. 87, pp. 1274–83.CrossRefGoogle Scholar
  3. 3.
    K.X. Jiao, J.L. Zhang, Z.Y. Wang, C.L. Chen, and Y.X. Liu: Steel Res. Int., 2017, vol. 88, pp. 1–9.Google Scholar
  4. 4.
    C. Sun, X. Liu, J. Li, X. Yin, S. Song, and Q. Wang: ISIJ Int., 2017, vol. 57, pp. 978–82.CrossRefGoogle Scholar
  5. 5.
    J. Qi, C. Liu, C. Zhang, and M. Jiang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 11–6.CrossRefGoogle Scholar
  6. 6.
    L. Wang, C. Zhang, D. Cai, J. Zhang, Y. Sasaki, and O. Ostrovski: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 516–26.CrossRefGoogle Scholar
  7. 7.
    J. Gao, G. Wen, T. Huang, P. Tang, and Q. Liu: J. Non-Cryst. Solids, 2016, vol. 435, pp. 33–9.CrossRefGoogle Scholar
  8. 8.
    E. Gao, W. Wang, and L. Zhang: J. Non-Cryst. Solids, 2017, vol. 473, pp. 79–86.CrossRefGoogle Scholar
  9. 9.
    L. Zhang, W. Wang, S. Xie, K. Zhang, and I. Sohn: J. Non-Cryst. Solids, 2017, vol. 460, 113–18.CrossRefGoogle Scholar
  10. 10.
    T. Talapaneni, N. Yedla, S. Pal, and S. Sarkar: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1450–62.CrossRefGoogle Scholar
  11. 11.
    R. Xu, J. Zhang, X. Fan, W. Zheng, and Y. Zhao: ISIJ Int., 2017, vol. 57, pp. 1887–94.CrossRefGoogle Scholar
  12. 12.
    Z. Yan, X. Lv, D. Liang, J. Zhang, and C. Bai: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1092–9.CrossRefGoogle Scholar
  13. 13.
    R.Z. Xu, J.L. Zhang, R.Y. Ma, K.X. Jiao, and Y.A. Zhao: Steel Res. Int., 2017.Google Scholar
  14. 14.
    X. Zhang, T. Jiang, X. Xue, and B. Hu: Steel Res. Int., 2016, vol. 87, pp. 87-94.CrossRefGoogle Scholar
  15. 15.
    K.I. Miyamoto, K. Kato, and T. Yuki: Tetsu-to-Hagane, 2002, vol. 88, pp. 838–44.CrossRefGoogle Scholar
  16. 16.
    Verein Deutscher Eisenhüttenleute (VDEh): Slag Atlas, 2nd ed., Verlag Stahleisen CmbH, Germany, 1995, pp. 101–20.Google Scholar
  17. 17.
    M. Kekkonen, H. Oghbasilasie, and S. Louhenkilpi: Viscosity Models for Molten Slags, Research Report. Aalto University, 2012.Google Scholar
  18. 18.
    L. Wang, S. Seetharaman: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 946–54.CrossRefGoogle Scholar
  19. 19.
    E. Minami, M. Amatatsu, and N. Sano: Tetsu-to-Hagane, 1987, vol. 73, S871.Google Scholar
  20. 20.
    G. Qiu, L. Chen, J. Zhu, X. Lv and C. Bai: ISIJ Int., 2015, vol. 55, pp. 1367–76.CrossRefGoogle Scholar
  21. 21.
    C. Xu, W. Wang, L. Zhou, S. Xie. and C. Zhang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 882–92.CrossRefGoogle Scholar
  22. 22.
    W. Huang, Y. Zhao, S. Yu, L. Zhang, Z. Ye, N. Wang and M. Chen: ISIJ Int., 2016, vol. 56, pp. 594–601.CrossRefGoogle Scholar
  23. 23.
    R.Z. Xu, J.L. Zhang, Z.Y. Wang, and K.X. Jiao: Steel Res. Int., 2016, vol. 87, pp. 1–7.CrossRefGoogle Scholar
  24. 24.
    Q. Li, J. Gao, Y. Zhang, Z. An, and Z. Guo: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 346–56.CrossRefGoogle Scholar
  25. 25.
    L. Forsbacka, and L. Holappa: VII International. Conference on Molten Slags, Fluxes and Salts, The South African Institute of Mining and Metallurgy, Johannesburg, 2004, pp. 129–36.Google Scholar
  26. 26.
    L. Forsbacka, and L. Holappa, A, Kondratiev, and E. Jak: Steel Res. Int., 2007, vol. 78, pp. 676–84.CrossRefGoogle Scholar
  27. 27.
    L. Forsbacka: Dr. Tech. Thesis, Helsinki University of Technology, TKK-MT-196, 2007.Google Scholar
  28. 28.
    KC Mills, L Yuan, Z Li, GH Zhang and KC Chou (2012) High Temp. Mater P 31: 301–21.Google Scholar
  29. 29.
    L. Forsbacka: Experiences in slag viscosity measurement by rotation cylinder method, Research Report, Laboratory of Metallurgy, Helsinki University of Technology.Google Scholar
  30. 30.
    M. Chen, S. Raghunath, and B. Zhao: Metall. Mater. Trans. B, 2013, vol. 44B, pp.506–15.CrossRefGoogle Scholar
  31. 31.
    I. Ikemoto, K. Ishii, S. Kinoshita, H. Kuroda, M.A. Franco, and J.M. Thomas: J. Solid State Chem., 1976, vol. 17, pp. 425–30.CrossRefGoogle Scholar
  32. 32.
    M.C. Biesinger, C. Brown, J.R. Mycroft, R.D. Davidson, and N.S. McIntyre: Surf. Interface Anal., 2004, vol. 36, pp. 1550–63.CrossRefGoogle Scholar
  33. 33.
    A.M. Venezia, and C.M. Loxton: Surf. Sci., 1990, vol. 225, pp. 195–205.CrossRefGoogle Scholar
  34. 34.
    C. Xu, M. Hassel, H. Kuhlenbeck, and H.J. Freund: Surf. Sci., 1991, vol. 258, pp. 23–34.CrossRefGoogle Scholar
  35. 35.
    A. Maetaki, and K. Kishi: Surf. Sci., 1998, vol. 411, pp. 35–45.CrossRefGoogle Scholar
  36. 36.
    D. Park, Y.S. Yun, and J.M. Park: J. Colloid Interf. Sci., 2008, vol. 317, pp. 54–61.CrossRefGoogle Scholar
  37. 37.
    L. Wang, J. Yu, and K.C. Chou: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1802–08.CrossRefGoogle Scholar
  38. 38.
    M.G. Frohberg, and K. Richter: Arch. Eisenbuttenwes., 1968, vol. 39, pp. 799–802.Google Scholar
  39. 39.
    K. Morita, M. Mori, M. Guo, T. Ikagawa, and N. Sano: Steel Res. Int., 1999, vol. 70, pp. 319–24.CrossRefGoogle Scholar
  40. 40.
    E.B. Pretorius, R. Snellgrove, and A. Muan: J. Am. Ceram. Soc., 1992, vol. 75, pp. 1378–81.CrossRefGoogle Scholar
  41. 41.
    E.B. Pretorius, and A. Muan: J. Am. Ceram. Soc., 1992, vol. 75, pp. 1364–77.CrossRefGoogle Scholar
  42. 42.
    W. Pei, and O. Wijk: Scand. J. Metall., 1994, vol. 23, pp. 228–35.Google Scholar
  43. 43.
    Y. Okabe, I. Tajima, and K. Ito: Metall. Mater. Trans. B, 1998, 29B, pp. 131–6.CrossRefGoogle Scholar
  44. 44.
    A.M. Mirzayousef-Jadid, K. Schwerdtfeger: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 533–43.CrossRefGoogle Scholar
  45. 45.
    Y. Xiao, M.A. Reuter, and L. Holappa: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 595–603.CrossRefGoogle Scholar
  46. 46.
    Y. Xiao, and L. Holappa: ISIJ Int., 1993, vol. 33, pp. 66–74.CrossRefGoogle Scholar
  47. 47.
    K. Mills: The Estimation of Slag Properties, Short Course Presented as Part of Southern African Pyrometallurgy 2011, 7th March 2011.Google Scholar
  48. 48.
    C.J.B. Fincham, and F.D. Richardson: P. Roy. Soc. Lon., 1952, vol. 223, pp. 40–62.CrossRefGoogle Scholar
  49. 49.
    Y.L. Zhen, G.H. Zhang, and K.C. Chou: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 155–61.CrossRefGoogle Scholar
  50. 50.
    S. Wright, L. Zhang, S. Sun, and S. Jahanshahi: Metall. Mater. Trans. B, 2000, vol. 31B, pp, 97–104.CrossRefGoogle Scholar
  51. 51.
    A. Einstein: Ann. Phys., 1911, vol. 34, pp. 591–92.CrossRefGoogle Scholar
  52. 52.
    R. Roscoe: Br. J. Appl. Phys., 1952, vol. 3, pp. 267–69.CrossRefGoogle Scholar
  53. 53.
    J. H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2004, vol. 35B, PP. 269–75.CrossRefGoogle Scholar
  54. 54.
    I. Sohn, J.M. Dong. Steel Res. Int., 2012, vol. 83, pp. 611–30.CrossRefGoogle Scholar
  55. 55.
    B.O. Mysen, D. Virgo, and C.M. Scarfe: Am. Miner., 1980, vol. 65, pp. 690–710.Google Scholar
  56. 56.
    L. Wang, Y. Wang, Q. Wang, and K.C. Chou: Metall. Mater. Trans. B, 2016, vol. 47B, pp.10–15.CrossRefGoogle Scholar
  57. 57.
    G.C. Jiang and J.L. You: J. Chin. Ceram. Soc., 2004, vol. 31, pp. 998–1002.Google Scholar
  58. 58.
    R.D. Shannon: Acta Crystallogr. Sect. A, 1976, vol. 32A, pp. 751–67.CrossRefGoogle Scholar
  59. 59.
    B.O. Mysen, L.W. Finger, D. Virgo, and F.A. Seifert: Am. Mineral., 1982, vol. 67, pp. 686–95.Google Scholar
  60. 60.
    J.D. Frantza, B.O. Mysen: Chem. Geol., 1995, vol. 121, pp. 155–76.CrossRefGoogle Scholar
  61. 61.
    B.O. Mysen, J.D. Frantz: Contrib. Mineral. Petr., 1994, vol. 117, pp. 1–14.CrossRefGoogle Scholar
  62. 62.
    J.F. Stebbins: J. Non-Cryst. Solids, 1988, vol. 106, pp. 359–69.CrossRefGoogle Scholar
  63. 63.
    J. You, G. Jiang, and K. Xu. J. Non-Cryst. Solids, 2001, vol. 282, pp. 125–31.CrossRefGoogle Scholar
  64. 64.
    Y.Q. Wu, G.C. Jiang, J.L. You, H.Y. Hou, and H. Chen: Acta Phys. Sin.-Ch. Ed., 2005, vol. 54, pp. 961–66.Google Scholar
  65. 65.
    S. Arrhenius: Phys. Chem., 1887, vol. 1, pp. 285–98.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingP.R. China

Personalised recommendations