Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys

Article
  • 18 Downloads

Abstract

Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-“CuO0.5”-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.

Notes

Acknowledgments

The authors would like to thank Nyrstar (Australia), Outotec Pty Ltd (Australia), Aurubis AG (Germany), Umicore NV (Belgium), Kazzinc Ltd, Glencore (Kazakhstan), and Australian Research Council Linkage project LP150100783 for their financial supports for this research.

References

  1. 1.
    A. Borthakur: Changes in Composition of EEE and Subsequent Impacts on Electronic Waste, 2015, pp. 186–93.Google Scholar
  2. 2.
    J. Cui and L. Zhang, J. Hazard. Mater., 2008, vol. 158, pp. 228-256.CrossRefGoogle Scholar
  3. 3.
    G.H. Kaiura, K. Watanabe and A. Yazawa, Can. Metall. Q., 1980, vol. 19, pp. 191-200.CrossRefGoogle Scholar
  4. 4.
    B. Blanpain, S. Arnout, M. Chintinne, and D.R. Swinbourne: in Handbook of Recycling, E. Worrell and M. Reuter, eds., Elsevier, Boston, 2014, pp 95–111.Google Scholar
  5. 5.
    C. Samuelsson, and B. Bjorkman: in Handbook of Recycling, E. Worrell and M. Reuter, eds., Elsevier, Boston, 2014, pp 85–94.Google Scholar
  6. 6.
    S.A. Decterov and A.D. Pelton, Metall. Mater. Trans. B, 1999, vol. 30B, pp. 1033-1044.CrossRefGoogle Scholar
  7. 7.
    K. Nakajima, O. Takeda, T. Miki and T. Nagasaka, Mater. Trans., 2009, vol. 50, pp. 453-460.CrossRefGoogle Scholar
  8. 8.
    K. Nakajima, O. Takeda, T. Miki, K. Matsubae and T. Nagasaka, Environ. Sci. Technol., 2011, vol. 45, pp. 4929-4936.CrossRefGoogle Scholar
  9. 9.
    G.W. Toop, Ionic equilibrium in silicate slags. M.Sc. Thesis, The University of British Columbia, 1960.Google Scholar
  10. 10.
    A.P. Joshi, The oxidation of carbon by cuprous oxide - lead oxide - silica melts. M.Sc. Thesis, The University of British Columbia, 1960.Google Scholar
  11. 11.
    A.P. Joshi, P.K. Jena and C.S. Samis, Can. Met. Quart., 1964, vol. 3, pp. 79-93.CrossRefGoogle Scholar
  12. 12.
    R.P. Das and G.W. Healy, Metall. Trans. B, 1976, vol. 7B, pp. 529-536.CrossRefGoogle Scholar
  13. 13.
    E. Sugimoto and S. Kuwata, Niihama Kogyo Koto Semmon Gakko Kiyo, Rikogaku Hen, 1978, vol. 14, pp. 100-113.Google Scholar
  14. 14.
    U. Kuxmann and K. Kurre, Erzmetall., 1968, vol. 21, pp. 199-209.Google Scholar
  15. 15.
    C. Landolt: Ph.D. Thesis, Pennsylvania State University, 1969.Google Scholar
  16. 16.
    T. Hidayat, H.M. Henao, P.C. Hayes and E. Jak, Metall. Mater. Trans. B, 2012, vol. 43, pp. 1290-99.CrossRefGoogle Scholar
  17. 17.
    X.G. Liu, Experimental Phase Equilibria Studies in Oxide Systems for Copper Smelting Slags. Master of Philosophy, University of Queensland, Australia, St Lucia, 2012.Google Scholar
  18. 18.
    L. Xia, Z. Liu and P.A. Taskinen, J. Chem. Thermodyn., 2016, vol. 98, pp. 126-134.CrossRefGoogle Scholar
  19. 19.
    K. Hirota and Y.T. Hasegawa, Bull. Chem. Soc. Jpn., 1981, vol. 54, pp. 754-756.CrossRefGoogle Scholar
  20. 20.
    E. Jak, S.A. Decterov, P. Wu, P.C. Hayes and A.D. Pelton, Metall. Mater. Trans. B, 1997, vol. 28B, pp. 1011-1018.CrossRefGoogle Scholar
  21. 21.
    E. Jak, B. Zhao, N. Liu and P.C. Hayes, Metall. Mater. Trans. B, 1999, vol. 30B, pp. 21-27.CrossRefGoogle Scholar
  22. 22.
    M. Shevchenko and E. Jak, J. Am. Ceram. Soc, 2018, vol. 101, pp. 458-471.CrossRefGoogle Scholar
  23. 23.
    O. Teppo, J. Niemela and P. Taskinen, Thermochim. Acta, 1991, vol. 185, pp. 155-169.CrossRefGoogle Scholar
  24. 24.
    R.A. Khairulin and S.V. Stankus, J. Phase Equilib., 1999, vol. 20, pp. 148-152.CrossRefGoogle Scholar
  25. 25.
    B. Onderka, D. Jendrzejczyk-Handzlik and K. Fitzner, Arch. Metall. Mater., 2013, vol. 58, pp. 541-548.CrossRefGoogle Scholar
  26. 26.
    I. Vaajamo, H. Johto and P. Taskinen, Int. J. Mater. Res., 2013, vol. 104, pp. 372-376.CrossRefGoogle Scholar
  27. 27.
    W. Hofmann and J. Kohlmeyer, Z. Metallkd., 1954, vol. 45, pp. 339-341.Google Scholar
  28. 28.
    E. Gebhardt and W. Obrowski, Z. MetaIlkd., 1954, vol. 45, pp. 332-338.Google Scholar
  29. 29.
    K. Fischer, Kristall and Technik (Crystal Research and Technology), 1979, vol. 14, pp. 835-839.CrossRefGoogle Scholar
  30. 30.
    M. Cancarevic, M. Zinkevich and F. Aldinger, Mater. Sci. Forum, 2005, vol. 494, pp. 67-72.CrossRefGoogle Scholar
  31. 31.
    M. Cancarevic, M. Zinkevich and F. Aldinger, Z. Metallkd., 2005, vol. 96, pp. 879-887.CrossRefGoogle Scholar
  32. 32.
    Y.A. Chang and K.-C. Hsieh: Phase Diagrams of Ternary Copper-Oxygen-Metal Systems, ASM International, Metals Park, Ohio 44073, 1989.Google Scholar
  33. 33.
    P.J. Lajzerowicz, Acta Crystallogr., 1965, vol. 20, pp. 357-363.CrossRefGoogle Scholar
  34. 34.
    J. Ito and C. Frondel, The Am. Mineral., 1967, vol. 52, pp. 1077-84.Google Scholar
  35. 35.
    U. Schmidt, K.H. Breuer and W. Eysel: Neues Jahrb. Mineral., Monatsh., 1983, pp. 227–35.Google Scholar
  36. 36.
    T. Hidayat, H.M. Henao, P.C. Hayes and E. Jak, Metall. Mater. Trans. B, 2012, vol. 43, pp. 1034–45.CrossRefGoogle Scholar
  37. 37.
    E. Jak, P.C. Hayes and H-G. Lee, Met. Mater. (Seoul), 1995, vol. 1, pp. 1-8.Google Scholar
  38. 38.
    E. Jak: in 9th International Conference on Molten Slags, Fluxes and Salts (MOLTEN12), The Chinese Society for Metals: Beijing, China, 2012.Google Scholar
  39. 39.
    J. Philibert: X-Ray Optics and Microanalysis, 3rd International Symposium, Stanford University, 1963, pp. 379–92.Google Scholar
  40. 40.
    P. Duncumb and S.J.B. Reed: Tube Investments Res. Lab., Cambridge, UK, 1968.Google Scholar
  41. 41.
    P. Duncumb: Electron Microscopy and Analysis, Proceedings of the 25th Anniversary Meeting, 1971, pp. 132–37.Google Scholar
  42. 42.
    S. Nikolic, P.C. Hayes and E. Jak, Metall. Mater. Trans. B, 2009, vol. 40B, pp. 892-99.CrossRefGoogle Scholar
  43. 43.
    E. Jak: Ph.D Thesis, University of Queensland, 1995.Google Scholar
  44. 44.
    M. Shevchenko, J. Chen and E. Jak: in AMAS 2017, 14 t h Biennial Australian Microbeam Analysis Symposium, QUT, Brisbane, 2017, pp. 94–95.Google Scholar
  45. 45.
    FactSage: Ecole Polytechnique, Montréal, http://www.factsage.com/, 2008.
  46. 46.
    P.R. Subramanian, D.J. Chakrabarti and D.E. Laughlin: Phase Diagrams of Binary Copper Alloys. ASM International, Metals Park, Ohio 44073, 1994.Google Scholar
  47. 47.
    E. Jak, S.A. Decterov, P.C. Hayes and A.D. Pelton: in Proceedings of the 5th International Conference on Molten Slags, Fluxes and Salts, Iron and Steel Soc., AIME, Sydney, Australia, 1997, pp. 621–28.Google Scholar
  48. 48.
    C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer and M.A. Van Ende, Calphad, 2016, vol. 54, pp. 35-53.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Pyrometallurgy Innovation Centre (PYROSEARCH)The University of QueenslandBrisbaneAustralia

Personalised recommendations