Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 3, pp 1322–1330 | Cite as

Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Density and Surface Tension

  • Zhiming Yan
  • Xuewei Lv
  • Zhengde Pang
  • Xueming Lv
  • Chenguang Bai
Article
  • 144 Downloads

Abstract

The effects of the Al2O3 concentration and Al2O3/SiO2 ratio on the density and surface tension of molten aluminosilicate CaO-SiO2-Al2O3-9 mass pct MgO-1 mass pct TiO2 slag were investigated at temperatures from 1723 K to 1823 K (1450 °C to 1550 °C) using the Archimedean method and the maximum bubble pressure (MBP) technique, respectively. The mechanism of the changes in density and surface tension with composition was analyzed from the viewpoint of the degree of polymerization in the structure and the types of oxygen species in the melts. At a fixed CaO/SiO2 ratio of 1.20, the density decreased with increasing Al2O3 content up to 25 mass pct, subsequently increasing. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.92 caused an increase in the density at a fixed CaO content, and the density decreased slightly when the Al2O3/SiO2 ratio was greater than 0.92. Based on the structural information, the density decreased when the Al2O3 content enhanced the network structure and increased when the (Q2 + Q3)/(Q0 + Q1) ratio and structural complexity decreased. The surface tension increased with increasing Al2O3 content and Al2O3/SiO2 ratio. On the one hand, the surface-active component of SiO2 decreased; on the other hand, the concentration of [AlO4]5− tetrahedra and metal cations that act as charge compensators increased at the melt surface. A model based on the anionic and cationic radii and the Butler equation was employed to predict the surface tension, and an iso-surface tension diagram was obtained at 1773 K (1500 °C).

Notes

Acknowledgments

This study was supported by The National Natural Science Foundation of China (Grant No. 51234010), Program for the Youth Top-notch Talents of Chongqing (Grant No. 20151001), and the China Scholarship Council.

References

  1. 1.
    M. Hino, T. Nagasaka, A. Katsumata, K. Higuchi, K. Yamaguchi, and N. Kon-no: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 671–83.CrossRefGoogle Scholar
  2. 2.
    A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 911–15.CrossRefGoogle Scholar
  3. 3.
    Z. Yan, X. Lv, D. Liang,J. Zhang,and C. Bai: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1092–99.CrossRefGoogle Scholar
  4. 4.
    D. Liang, Z. Yan, X. Lv, J. Zhang, and C. Bai: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 573–81.CrossRefGoogle Scholar
  5. 5.
    Z. Yan, X. Lv, Z. Pang, W. He, D. Liang, and C. Bai: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2607–14.CrossRefGoogle Scholar
  6. 6.
    K.C. Mills: Slag Atlas, 2nd ed., Verein Deutscher Eisenhüttenleute, Verlag Stahleisen GmbH, Düsseldorf, Germany, 1995, p. 408.Google Scholar
  7. 7.
    K. Zheng, Z. Zhang, L. Liu, and W. Wang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1389–97.CrossRefGoogle Scholar
  8. 8.
    J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 269–75.CrossRefGoogle Scholar
  9. 9.
    S Sukenaga, T Higo, H Shibata, S Saito, Nakashima K (2015) ISIJ Int. 55:1299–1304.CrossRefGoogle Scholar
  10. 10.
    H. Shigeta and O. Kazumi Ogino: Can. Metall. Q., 1981, vol. 20, pp. 113–16.CrossRefGoogle Scholar
  11. 11.
    S. Vaisburd and D.G. Brandon: Meas. Sci. Technol., 1997, vol. 8, pp. 822–26.CrossRefGoogle Scholar
  12. 12.
    D.W.G. White: Trans. Am. Soc. Met., 1962, vol. 55, pp. 757–77.Google Scholar
  13. 13.
    E.D. Hondros: Physicochem. Meas. Met. Res., 1970, vol. 4, pp. 293–348.Google Scholar
  14. 14.
    M. Askari and A.M. Cameron: Can. Metall. Q., 1981, vol. 20, pp. 113–16 .CrossRefGoogle Scholar
  15. 15.
    M. Kucharski, W. Ip, and J. M. Toguri: Can. Metall. Q., 1991, vol. 30, pp. 207–12.CrossRefGoogle Scholar
  16. 16.
    G. Lang: J. Inst. Met., 1973, vol. 101, pp. 300–08.Google Scholar
  17. 17.
    I. Suh, H. Ohta, and Y. Waseda: J. Mater. Sci., 1988, vol. 23, pp. 757–60.CrossRefGoogle Scholar
  18. 18.
    L Sokolov, V Baidov, L Kunin, V Dymov (1971) Teor. Metall. Prots. 75:53.Google Scholar
  19. 19.
    R. Rajavaram, H. Kim, C.H. Lee, W.S. Cho, C.H.Lee, and J. Lee: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1595–1601.CrossRefGoogle Scholar
  20. 20.
    H. Winterhager: Forschungsberichte des Landes Nordrhein-Westfalen, Westdeutscher Verlag, Germany, 1966.Google Scholar
  21. 21.
    L.R. Barrett: J. Glass Technol., 1959, vol. 43, p. 179.Google Scholar
  22. 22.
    Y. Kang and K. Morita: ISIJ Int., 2006, vol. 46, pp. 420–26.CrossRefGoogle Scholar
  23. 23.
    K.C. Mills, M. Hayashi, L. Wang, and T. Watanabe: Treatise Process Metall. Process Fundam., 2014, vol. 14, pp. 149–286.CrossRefGoogle Scholar
  24. 24.
    B.O. Mysen, D. Virgo, and I. Kushiro: Am. Mineral., 1981, vol. 66, pp. 678–701.Google Scholar
  25. 25.
    S.A. Brawer and W.B. White: J. Non-Cryst. Solids, 1977, vol. 23, pp. 261–78.CrossRefGoogle Scholar
  26. 26.
    B.O. Mysen: Am. Mineral., 2003, vol. 88, pp. 1668–78.CrossRefGoogle Scholar
  27. 27.
    D.R. Lide: CRC Handbook of Chemistry and Physics, Internet Version 2007, 87th ed., Taylor & Francis, Boca Raton, FL, 2005, pp. 9–54.Google Scholar
  28. 28.
    M. Liu, A. Jacob, C. Schmetterer, P.J. Masset, L. Hennet, H.E. Fischer, J. Kozaily, S. Jahn, and A. Gray-Weale: J. Phys. Condens. Matter, 2016, vol. 28, pp. 102–35.Google Scholar
  29. 29.
    S. Takahashi, D.R. Neuville, and H. Takebe: J. Non-Cryst. Solids, 2015, vol. 411, pp. 5–12.CrossRefGoogle Scholar
  30. 30.
    K. Mukai and T. Ishikawa: J. Jpn. Inst. Met., 1981, vol. 45, pp. 147–54.CrossRefGoogle Scholar
  31. 31.
    Y.L. Tian, S.G. Guo, and S.B. Sun: Key Eng. Mater., 2015, vol. 633, pp. 322–25.CrossRefGoogle Scholar
  32. 32.
    B.C. Parmelee and C.G. Harman: J. Am. Ceram. Soc., 2010, vol. 20, pp. 224–30.CrossRefGoogle Scholar
  33. 33.
    H.W. Fenzke: Neue Hutte, 1969, vol. 14, pp. 552–28.Google Scholar
  34. 34.
    A.S. Kim, A.A. Akberdin, and I.S. Kulikov: Viniti (USSR), 1981, Report No. 5508-81.Google Scholar
  35. 35.
    K. Mills: Southern African Pyrometallurgy 2011 Int. Conf., 2011, pp. 1–52.Google Scholar
  36. 36.
    K. Sunahara, K. Nakano, M. Hoshi, T. Inada, S. Komatsu, and T. Yamamoto: ISIJ Int., 2008, vol. 48, pp. 420–29.CrossRefGoogle Scholar
  37. 37.
    I.A. Magidson, A.V. Basov, and N.A. Smirnov: Russ. Metall., 2009, vol. 7, pp. 631–35.CrossRefGoogle Scholar
  38. 38.
    W.D. Kingery: J. Am. Ceram. Soc., 1959, vol. 42, pp. 6–11.CrossRefGoogle Scholar
  39. 39.
    J. Zhang, S. Shu, and S. Wei: Proc. 6th Int. Conf. Molten Slags, Fluxes and Salts, Stockholm, 2000.Google Scholar
  40. 40.
    T. Tanaka, K. Hack, T. Iida, and S. Hara: Z. Metallkd., 1996, vol. 87, pp. 380–89.Google Scholar
  41. 41.
    T. Tanaka, K. Hack, and S. Hara: Calphad-Comput. Coupl. Phase Diagr. Thermochem., 2000, vol. 24, pp. 465–74.CrossRefGoogle Scholar
  42. 42.
    T. Tanaka, S. Hara, M. Ogawa, and T. Ueda: ISIJ Int., 2006, vol. 46, pp. 400–06.CrossRefGoogle Scholar
  43. 43.
    M. Hanao, T. Tanaka, M. Kawamoto, and K. Takatani: ISIJ Int., 2007, vol. 47, pp. 935–39.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Zhiming Yan
    • 1
  • Xuewei Lv
    • 1
    • 2
  • Zhengde Pang
    • 1
  • Xueming Lv
    • 1
  • Chenguang Bai
    • 1
  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.State Key Laboratory of Mechanical TransmissionsChongqing UniversityChongqingChina

Personalised recommendations