Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 3, pp 953–957 | Cite as

Regimes of Micro-bubble Formation Using Gas Injection into Ladle Shroud

  • Sheng Chang
  • Xiangkun Cao
  • Zongshu Zou
Communication
  • 198 Downloads

Abstract

Gas injection into a ladle shroud is a practical approach to produce micro-bubbles in tundishes, to promote inclusion removal from liquid steel. A semi-empirical model was established to characterize the bubble formation considering the effect of shearing action combined with the non-fully bubble break-up by turbulence. The model shows a good accuracy in predicting the size of bubbles formed in complex flow within the ladle shroud.

Notes

The authors would like to appreciate Professor Roderick I.L. Guthrie and Dr. Mihaiela Isac, for providing all the research facilities in McGill Metals Processing Centre. We also acknowledge the financial support from NESRC and Nippon Steel & Sumitomo Metal Cooperation, for this work.

References

  1. 1.
    K. Chattopadhyay, M. Hasan, M. Isac and R. I. L. Guthrie: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 225-233.CrossRefGoogle Scholar
  2. 2.
    S. Chang, L. C. Zhong and Z. S. Zou: ISIJ Int., 2015, vol. 55, pp. 837-844.CrossRefGoogle Scholar
  3. 3.
    A. Ramos-Banderas, R. D. Morales, L. Garcia-Demedices and M. Diaz-Cruz: ISIJ Int., 2003, vol. 43, pp. 653-662.CrossRefGoogle Scholar
  4. 4.
    A. Cwudzinski: Ironmaking Steelmaking, 2010, vol. 37, pp. 169-180.CrossRefGoogle Scholar
  5. 5.
    L. F. Zhang, J. Aoki and B. G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 361-379.CrossRefGoogle Scholar
  6. 6.
    H. L. Yang, P. He and Y. C. Zhai: ISIJ Int., 2014, vol. 54, pp. 578-581.CrossRefGoogle Scholar
  7. 7.
    L. F. Zhang and S. Taniguchi: Int. Mater. Rev., 2000, vol. 45, pp. 59-82.CrossRefGoogle Scholar
  8. 8.
    G. A. Irons and R. I. L. Guthrie: Metall. Trans. B, 1978, vol. 9B, pp. 101-110.CrossRefGoogle Scholar
  9. 9.
    Z. Q. Liu, F. S. Qi, B. K. Li and S. C. P. Cheung: Int. J. Multiphase Flow, 2016, vol. 79, pp. 190-121.CrossRefGoogle Scholar
  10. 10.
    D. Mazumdar, G. Yamanoglu, R. Shankarnarayanan, R. I. L. Guthrie: Steel Res., 1995, vol. 66, pp. 14-19.CrossRefGoogle Scholar
  11. 11.
    S. Chang, X. K. Cao, Z. S. Zou, M. Isac and R. I. L. Guthrie: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2732-2743.CrossRefGoogle Scholar
  12. 12.
    S. H. Marshall, M. W. Chudacek and D. F. Bagster: Chem. Eng. Sci., 1993, vol. 48, pp. 2049-2059.CrossRefGoogle Scholar
  13. 13.
    G. M. Evans, G. J. Jameson and B. W. Atkinson: Chem. Eng. Sci., 1992, vol. 47, pp. 3265-3272.CrossRefGoogle Scholar
  14. 14.
    H. E. L. Haugen and S. Kragset: J. Fluid Mech., 2010, vol. 661, 239-261.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangP.R. China
  2. 2.McGill Metals Processing CentreMcGill UniversityMontrealCanada
  3. 3.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations