Skip to main content
Log in

Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters (i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M.A. Yescas and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 2002, vol. 333, pp. 60-66.

    Article  Google Scholar 

  2. D.C. Putman and R.C. Thomson: Int. J. Cast Met. Res., 2003, vol. 16, pp. 191-196.

    Article  Google Scholar 

  3. U. Batra, S. Ray, and S.R. Prabhakar: J. Mater. Eng. Perform., 2004, vol. 13, pp. 64-68.

    Article  Google Scholar 

  4. A. Trudel and M. Gagné: Can. Metall. Quart., 1997, vol. 36, pp. 289-298.

    Article  Google Scholar 

  5. B. Bosnjak, B. Radulovic, K. Pop-Tonev, and V. Asanovic: J. Mater. Eng. Perform., 2001, vol. 10, pp. 203-211.

    Article  Google Scholar 

  6. E. Fraś, M. Górny, E. Tyrała, and H. Lopez: Mater. Sci. Technol., 2012, vol. 28, pp. 1391-1396.

    Article  Google Scholar 

  7. M. Ji and R. Shivpuri: Mater. Sci. Eng. A, 2006, vol. 425, pp. 156-166.

    Article  Google Scholar 

  8. J.S. Sun and C.S. Wu: Model. Simul. Mater. Sc., 2001, vol. 9, pp. 25-36.

    Article  Google Scholar 

  9. S.D. Ji, H.Y. Fang, X.S. Liu, and Q.G. Meng: Model. Simul. Mater. Sc., 2005, vol. 13, pp. 553-565.

    Article  Google Scholar 

  10. S. Karaoğlu and A. Seçgin: J. Mater. Process. Tech., 2008, vol. 202, pp. 500-507.

    Article  Google Scholar 

  11. Z. Peng and T. Sheppard: Model. Simul. Mater. Sc., 2004, vol. 12, pp. 43-57.

    Article  Google Scholar 

  12. S. Hansson and T. Jansson: J. Mater. Process. Tech., 2010, vol. 210, pp. 1386-1396.

    Article  Google Scholar 

  13. S.K. Fjeldbo, Y. Li, K. Marthinsen, and T. Furu: J. Mater. Process. Tech., 2012, vol. 212, pp. 171-180.

    Article  Google Scholar 

  14. P. Ferro: Model. Simul. Mater. Sci., 2012, vol. 20, art. 085003.

  15. A. Kumar, M. Založnik, H. Combeau, B. Goyeau, and D. Gobin: Model. Simul. Mater. Sci., 2013, vol. 21, art. 045016.

  16. E. Hepp, V. Hurevich, and W. Schäfer: IOP Conf. Ser-Mat. Sci., 2012, vol. 33, art. 012076.

  17. A.D. Boccardo, P.M. Dardati, D.J. Celentano, L.A. Godoy, M. Górny, and E. Tyrała: Mater. Trans. B, 2016, vol. 47, pp. 566-575.

    Article  Google Scholar 

  18. A.D. Boccardo, P.M. Dardati, D.J. Celentano, and L.A. Godoy: Finite Elem. Anal. Des., 2017, vol. 134, pp. 82-91.

    Article  Google Scholar 

  19. D.J. Celentano: Int. J. Plast., 2001, vol. 17, pp. 1623-1658.

    Article  Google Scholar 

  20. D.J. Celentano: Mater. Manuf. Process., 2010, vol. 25, pp. 546-556.

    Article  Google Scholar 

  21. D.J. Celentano, P.M. Dardati, F.D. Carazo, and L.A. Godoy: Mater. Sci. Technol., 2013, vol. 29, pp. 156-164.

    Article  Google Scholar 

  22. R.M. Ghergu, J. Sertucha, Y. Thebault, and J. Lacaze: ISIJ Int., 2012, vol. 52, pp. 2036-2041.

    Article  Google Scholar 

  23. H.K.D.H. Bhadeshia: Bainite in steels, 2nd ed., IOM Communications, London, 2001.

    Google Scholar 

  24. A.D. Boccardo, P.M. Dardati, D.J. Celentano, and L.A. Godoy: Mater. Trans. A, 2017, vol. 48, pp. 524-535.

    Article  Google Scholar 

  25. A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola: Global Sensitivity Analysis: The Primer, Wiley, England, 2008, pp. 155-182.

    Google Scholar 

  26. A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola: Comput. Phys. Commun., 2010, vol. 181, pp. 259-270.

    Article  Google Scholar 

  27. I.M. Sobol’ and Yu.L. Levitan: Comput. Math. Appl., 1999, vol. 37, pp. 33-40.

    Article  Google Scholar 

  28. A.D. Boccardo: Thermo-Mechanical-Metallurgical Modelling of Austempering Heat Treatment of Ductile Irons (in Spanish), PhD Thesis, Universidad Nacional de Córdoba, Córdoba, Argentina, 2017, http://hdl.handle.net/11086/4758.

  29. J. Lacaze and V. Gerval: ISIJ Int., 1998, vol. 38, pp. 714-722.

    Article  Google Scholar 

  30. W. Kapturkiewicz, E. Fraś, and A.A. Burbelko: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 352-357.

    Article  Google Scholar 

Download references

Acknowledgments

A.D. Boccardo had a postdoctoral scholarship from CONICET during this research. P.M. Dardati was supported by a grant from UTN. L.A. Godoy is a member of the research staff of CONICET. D.J. Celentano acknowledges the support of CONICYT through REDES Project 150041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Boccardo.

Additional information

Manuscript submitted July 28, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boccardo, A.D., Dardati, P.M., Godoy, L.A. et al. Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters. Metall Mater Trans B 49, 1522–1536 (2018). https://doi.org/10.1007/s11663-018-1222-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1222-y

Keywords

Navigation