Metallurgical and Materials Transactions B

, Volume 49, Issue 3, pp 1522–1536 | Cite as

Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters

  • A. D. BoccardoEmail author
  • P. M. Dardati
  • L. A. Godoy
  • D. J. Celentano


Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters (i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.



A.D. Boccardo had a postdoctoral scholarship from CONICET during this research. P.M. Dardati was supported by a grant from UTN. L.A. Godoy is a member of the research staff of CONICET. D.J. Celentano acknowledges the support of CONICYT through REDES Project 150041.


  1. 1.
    M.A. Yescas and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 2002, vol. 333, pp. 60-66.CrossRefGoogle Scholar
  2. 2.
    D.C. Putman and R.C. Thomson: Int. J. Cast Met. Res., 2003, vol. 16, pp. 191-196.CrossRefGoogle Scholar
  3. 3.
    U. Batra, S. Ray, and S.R. Prabhakar: J. Mater. Eng. Perform., 2004, vol. 13, pp. 64-68.CrossRefGoogle Scholar
  4. 4.
    A. Trudel and M. Gagné: Can. Metall. Quart., 1997, vol. 36, pp. 289-298.CrossRefGoogle Scholar
  5. 5.
    B. Bosnjak, B. Radulovic, K. Pop-Tonev, and V. Asanovic: J. Mater. Eng. Perform., 2001, vol. 10, pp. 203-211.CrossRefGoogle Scholar
  6. 6.
    E. Fraś, M. Górny, E. Tyrała, and H. Lopez: Mater. Sci. Technol., 2012, vol. 28, pp. 1391-1396.CrossRefGoogle Scholar
  7. 7.
    M. Ji and R. Shivpuri: Mater. Sci. Eng. A, 2006, vol. 425, pp. 156-166.CrossRefGoogle Scholar
  8. 8.
    J.S. Sun and C.S. Wu: Model. Simul. Mater. Sc., 2001, vol. 9, pp. 25-36.CrossRefGoogle Scholar
  9. 9.
    S.D. Ji, H.Y. Fang, X.S. Liu, and Q.G. Meng: Model. Simul. Mater. Sc., 2005, vol. 13, pp. 553-565.CrossRefGoogle Scholar
  10. 10.
    S. Karaoğlu and A. Seçgin: J. Mater. Process. Tech., 2008, vol. 202, pp. 500-507.CrossRefGoogle Scholar
  11. 11.
    Z. Peng and T. Sheppard: Model. Simul. Mater. Sc., 2004, vol. 12, pp. 43-57.CrossRefGoogle Scholar
  12. 12.
    S. Hansson and T. Jansson: J. Mater. Process. Tech., 2010, vol. 210, pp. 1386-1396.CrossRefGoogle Scholar
  13. 13.
    S.K. Fjeldbo, Y. Li, K. Marthinsen, and T. Furu: J. Mater. Process. Tech., 2012, vol. 212, pp. 171-180.CrossRefGoogle Scholar
  14. 14.
    P. Ferro: Model. Simul. Mater. Sci., 2012, vol. 20, art. 085003.Google Scholar
  15. 15.
    A. Kumar, M. Založnik, H. Combeau, B. Goyeau, and D. Gobin: Model. Simul. Mater. Sci., 2013, vol. 21, art. 045016.Google Scholar
  16. 16.
    E. Hepp, V. Hurevich, and W. Schäfer: IOP Conf. Ser-Mat. Sci., 2012, vol. 33, art. 012076.Google Scholar
  17. 17.
    A.D. Boccardo, P.M. Dardati, D.J. Celentano, L.A. Godoy, M. Górny, and E. Tyrała: Mater. Trans. B, 2016, vol. 47, pp. 566-575.CrossRefGoogle Scholar
  18. 18.
    A.D. Boccardo, P.M. Dardati, D.J. Celentano, and L.A. Godoy: Finite Elem. Anal. Des., 2017, vol. 134, pp. 82-91.CrossRefGoogle Scholar
  19. 19.
    D.J. Celentano: Int. J. Plast., 2001, vol. 17, pp. 1623-1658.CrossRefGoogle Scholar
  20. 20.
    D.J. Celentano: Mater. Manuf. Process., 2010, vol. 25, pp. 546-556.CrossRefGoogle Scholar
  21. 21.
    D.J. Celentano, P.M. Dardati, F.D. Carazo, and L.A. Godoy: Mater. Sci. Technol., 2013, vol. 29, pp. 156-164.CrossRefGoogle Scholar
  22. 22.
    R.M. Ghergu, J. Sertucha, Y. Thebault, and J. Lacaze: ISIJ Int., 2012, vol. 52, pp. 2036-2041.CrossRefGoogle Scholar
  23. 23.
    H.K.D.H. Bhadeshia: Bainite in steels, 2nd ed., IOM Communications, London, 2001.Google Scholar
  24. 24.
    A.D. Boccardo, P.M. Dardati, D.J. Celentano, and L.A. Godoy: Mater. Trans. A, 2017, vol. 48, pp. 524-535.CrossRefGoogle Scholar
  25. 25.
    A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola: Global Sensitivity Analysis: The Primer, Wiley, England, 2008, pp. 155-182.Google Scholar
  26. 26.
    A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola: Comput. Phys. Commun., 2010, vol. 181, pp. 259-270.CrossRefGoogle Scholar
  27. 27.
    I.M. Sobol’ and Yu.L. Levitan: Comput. Math. Appl., 1999, vol. 37, pp. 33-40.CrossRefGoogle Scholar
  28. 28.
    A.D. Boccardo: Thermo-Mechanical-Metallurgical Modelling of Austempering Heat Treatment of Ductile Irons (in Spanish), PhD Thesis, Universidad Nacional de Córdoba, Córdoba, Argentina, 2017,
  29. 29.
    J. Lacaze and V. Gerval: ISIJ Int., 1998, vol. 38, pp. 714-722.CrossRefGoogle Scholar
  30. 30.
    W. Kapturkiewicz, E. Fraś, and A.A. Burbelko: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 352-357.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • A. D. Boccardo
    • 1
    • 2
    Email author
  • P. M. Dardati
    • 2
  • L. A. Godoy
    • 1
    • 3
  • D. J. Celentano
    • 4
  1. 1.Instituto de Estudios Avanzados en Ingeniería y TecnologíaIDIT, CONICET-Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Grupo de Investigación y Desarrollo en Mecánica Aplicada, GIDMA, Facultad Regional CórdobaUniversidad Tecnológica NacionalCórdobaArgentina
  3. 3.Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
  4. 4.Department of Mechanical and Metallurgical Engineering, Research Center for Nanotechnology and Advanced Materials (CIEN-UC)Pontificia Universidad Católica de ChileSantiago de ChileChile

Personalised recommendations