Skip to main content
Log in

Analysis of Brazing Effect on Hot Corrosion Behavior of a Nickel-Based Aerospace Superalloy

  • Topical Collection: Advances in Materials Manufacturing and Processing
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effects of brazing and use of composite powder mixture as interlayer material on hot corrosion resistance of brazed IN738 superalloy were studied. Brazing was observed to result in significant reduction in the hot corrosion resistance of the superalloy. However, application of composite powder mixture, which consists of additive superalloy powder, enhanced the hot corrosion resistance of brazed samples. It is also found that although the use of composite powder mixture increased hot corrosion resistance of brazed alloy, if the additive powder completely melts, which is possible during brazing, it can significantly reduce the hot corrosion resistance of the brazed joint. Elemental micro-segregation during solidification of the joint with completely melted powder mixture produces chromium-depleted zones and consequently reduces hot corrosion resistance, since a uniform distribution and adequate chromium concentration are necessary to combat hot corrosion. This has not been previously reported in the literature and it is crucial to the use of composite powder mixture for enhancing the properties of brazed superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. F. Smith: Structure and properties of engineering alloys, McGraw-Hill book company, New York, 1981.

    Google Scholar 

  2. W. Miglietti: Proceedings of the 4th International Brazing and Soldering Conference, Orlando, FL, 2009.

  3. M Chunwei, S Kun, Y Zhishui, and X Peiquan: Acta Metall. Sin. (Engl. lett.), 2011, vol. 24, pp. 205–212.

    Google Scholar 

  4. B. Jahnke and J. Demny: Metall. Ceram. Prot. Coat., 1983, vol. 110, pp. 225-235.

    Google Scholar 

  5. L. Zhang, J. Feng and P. He: J. Mater. Sci. Eng. A, 2006, vol. 428, pp. 24-33.

    Article  Google Scholar 

  6. L. Osoba and O. Ojo: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4020-4024.

    Article  Google Scholar 

  7. X. Wu, R. S. Chandel, H. P. Seow and H. Li: J. Mater. Process. Technol., 2001, vol. 113, pp. 215-221.

    Article  Google Scholar 

  8. A. Ghoneim: PhD Thesis, 2011, University of Manitoba, Winnipeg, Manitoba.

  9. J.F. Hunedy: Master’s Thesis, 2013, University of Manitoba, Winnipeg, Manitoba.

  10. O. Ojo: J Mater Sci, 2012, vol. 47, pp. 1598-1602.

    Article  Google Scholar 

  11. L. Zheng, Z. Maicang and D. Jianxin: Materials and Design, 2011, vol. 32, pp. 1981-1989.

    Article  Google Scholar 

  12. R. A. Rapp: Corros. Sci., 2002, vol. 44, pp. 209-221.

    Article  Google Scholar 

  13. S. H. Cho, J. M. Hur, C. S. Seo, J. S. Yoon and S. W. Park: J. Alloys Compd., 2009, vol. 468, pp. 263-269.

    Article  Google Scholar 

  14. D. Deb, S. R. lyer and V. Radhakrishnan: Mater. lett., 1996, vol. 29, pp. 19-23.

    Article  Google Scholar 

  15. T. Sidhu, S. Prakash and R. Agrawal: J. Mater. Sci. Eng. A, 2006, vol. 430, pp. 64-78.

    Article  Google Scholar 

  16. T. Gheno and B. Gleeson: Oxid Met, 2015, vol. 84, p. 567–584.

    Article  Google Scholar 

  17. M. N. Task, B. Gleeson, F. S. Pettit and G. H. Meier: Oxid Met, 2013, vol. 80, p. 541–552.

    Article  Google Scholar 

  18. S. D. Nelson, S. Liu, S. Kottilingam and J. C. Madeni: Weld. World, 2014, vol. 58, pp. 593-600.

    Article  Google Scholar 

  19. K. Ohsasa, T. Narita and T. Shinmura: J. Phase Equilib., 1999, vol. 20, pp. 199-206.

    Article  Google Scholar 

  20. O. A. Idowu, O. A. Ojo and M. C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37, p. 2787–2796.

    Article  Google Scholar 

  21. M.N. Task: Master’s Thesis, 2010, University of Pittsburgh, Pittsburgh, Pennsylvania.

  22. F. Pettit: Oxid. Met., 2011, vol. 76, pp. 1-21.

    Article  Google Scholar 

  23. G. Fryburg, F. Kohl and C. Stearns: J. Electrochem. Soc., 1984, vol. 131, pp. 2985-2997.

    Article  Google Scholar 

  24. J. Stringer: Mater. Sci. Technol., 1987, vol. 3, pp. 482-493.

    Article  Google Scholar 

  25. C. T. Sims and W. C. Hagel: The Superalloys, John Wiley & Sons,New York, 1972.

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge financial support from NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Ojo.

Additional information

Manuscript submitted August 16, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, N., Ojo, O.A. Analysis of Brazing Effect on Hot Corrosion Behavior of a Nickel-Based Aerospace Superalloy. Metall Mater Trans B 49, 912–918 (2018). https://doi.org/10.1007/s11663-018-1201-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1201-3

Keywords

Navigation