Metallurgical and Materials Transactions B

, Volume 49, Issue 3, pp 912–918 | Cite as

Analysis of Brazing Effect on Hot Corrosion Behavior of a Nickel-Based Aerospace Superalloy

  • N. Esmaeili
  • O. A. Ojo
Topical Collection: Advances in Materials Manufacturing and Processing
Part of the following topical collections:
  1. Advances in Materials Manufacturing III


The effects of brazing and use of composite powder mixture as interlayer material on hot corrosion resistance of brazed IN738 superalloy were studied. Brazing was observed to result in significant reduction in the hot corrosion resistance of the superalloy. However, application of composite powder mixture, which consists of additive superalloy powder, enhanced the hot corrosion resistance of brazed samples. It is also found that although the use of composite powder mixture increased hot corrosion resistance of brazed alloy, if the additive powder completely melts, which is possible during brazing, it can significantly reduce the hot corrosion resistance of the brazed joint. Elemental micro-segregation during solidification of the joint with completely melted powder mixture produces chromium-depleted zones and consequently reduces hot corrosion resistance, since a uniform distribution and adequate chromium concentration are necessary to combat hot corrosion. This has not been previously reported in the literature and it is crucial to the use of composite powder mixture for enhancing the properties of brazed superalloys.



The authors gratefully acknowledge financial support from NSERC of Canada.


  1. 1.
    W. F. Smith: Structure and properties of engineering alloys, McGraw-Hill book company, New York, 1981.Google Scholar
  2. 2.
    W. Miglietti: Proceedings of the 4th International Brazing and Soldering Conference, Orlando, FL, 2009.Google Scholar
  3. 3.
    M Chunwei, S Kun, Y Zhishui, and X Peiquan: Acta Metall. Sin. (Engl. lett.), 2011, vol. 24, pp. 205–212.Google Scholar
  4. 4.
    B. Jahnke and J. Demny: Metall. Ceram. Prot. Coat., 1983, vol. 110, pp. 225-235.Google Scholar
  5. 5.
    L. Zhang, J. Feng and P. He: J. Mater. Sci. Eng. A, 2006, vol. 428, pp. 24-33.CrossRefGoogle Scholar
  6. 6.
    L. Osoba and O. Ojo: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4020-4024.CrossRefGoogle Scholar
  7. 7.
    X. Wu, R. S. Chandel, H. P. Seow and H. Li: J. Mater. Process. Technol., 2001, vol. 113, pp. 215-221.CrossRefGoogle Scholar
  8. 8.
    A. Ghoneim: PhD Thesis, 2011, University of Manitoba, Winnipeg, Manitoba.Google Scholar
  9. 9.
    J.F. Hunedy: Master’s Thesis, 2013, University of Manitoba, Winnipeg, Manitoba.Google Scholar
  10. 10.
    O. Ojo: J Mater Sci, 2012, vol. 47, pp. 1598-1602.CrossRefGoogle Scholar
  11. 11.
    L. Zheng, Z. Maicang and D. Jianxin: Materials and Design, 2011, vol. 32, pp. 1981-1989.CrossRefGoogle Scholar
  12. 12.
    R. A. Rapp: Corros. Sci., 2002, vol. 44, pp. 209-221.CrossRefGoogle Scholar
  13. 13.
    S. H. Cho, J. M. Hur, C. S. Seo, J. S. Yoon and S. W. Park: J. Alloys Compd., 2009, vol. 468, pp. 263-269.CrossRefGoogle Scholar
  14. 14.
    D. Deb, S. R. lyer and V. Radhakrishnan: Mater. lett., 1996, vol. 29, pp. 19-23.CrossRefGoogle Scholar
  15. 15.
    T. Sidhu, S. Prakash and R. Agrawal: J. Mater. Sci. Eng. A, 2006, vol. 430, pp. 64-78.CrossRefGoogle Scholar
  16. 16.
    T. Gheno and B. Gleeson: Oxid Met, 2015, vol. 84, p. 567–584.CrossRefGoogle Scholar
  17. 17.
    M. N. Task, B. Gleeson, F. S. Pettit and G. H. Meier: Oxid Met, 2013, vol. 80, p. 541–552.CrossRefGoogle Scholar
  18. 18.
    S. D. Nelson, S. Liu, S. Kottilingam and J. C. Madeni: Weld. World, 2014, vol. 58, pp. 593-600.CrossRefGoogle Scholar
  19. 19.
    K. Ohsasa, T. Narita and T. Shinmura: J. Phase Equilib., 1999, vol. 20, pp. 199-206.CrossRefGoogle Scholar
  20. 20.
    O. A. Idowu, O. A. Ojo and M. C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37, p. 2787–2796.CrossRefGoogle Scholar
  21. 21.
    M.N. Task: Master’s Thesis, 2010, University of Pittsburgh, Pittsburgh, Pennsylvania.Google Scholar
  22. 22.
    F. Pettit: Oxid. Met., 2011, vol. 76, pp. 1-21.CrossRefGoogle Scholar
  23. 23.
    G. Fryburg, F. Kohl and C. Stearns: J. Electrochem. Soc., 1984, vol. 131, pp. 2985-2997.CrossRefGoogle Scholar
  24. 24.
    J. Stringer: Mater. Sci. Technol., 1987, vol. 3, pp. 482-493.CrossRefGoogle Scholar
  25. 25.
    C. T. Sims and W. C. Hagel: The Superalloys, John Wiley & Sons,New York, 1972.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations