Skip to main content
Log in

Constitutive Modeling of the Flow Stress of GCr15 Continuous Casting Bloom in the Heavy Reduction Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

According to the calculation results of a 3D thermomechanical-coupled finite-element (FE) model of GCr15 bearing steel bloom during a heavy reduction (HR) process, the variation ranges in the strain rate and strain under HR were described. In addition, the hot deformation behavior of the GCr15 bearing steel was studied over the temperature range from 1023 K to 1573 K (750 °C to 1300 °C) with strain rates of 0.001, 0.01, and 0.1 s−1 in single-pass thermosimulation compression experiments. To ensure the accuracy of the constitutive model, the temperature range was divided into two temperature intervals according to the fully austenitic temperature of GCr15 steel [1173 K (900 °C)]. Two sets of material parameters for the constitutive model were derived based on the true stress–strain curves of the two temperature intervals. A flow stress constitutive model was established using a revised Arrhenius-type constitutive equation, which considers the relationships among the material parameters and true strain. This equation describes dynamic softening during hot compression processes. Considering the effect of glide and climb on the deformation mechanism, the Arrhenius-type constitutive equation was modified by a physically based approach. This model is the most accurate over the temperatures ranging from 1173 K to 1573 K (900 °C to 1300 °C) under HR deformation conditions (ignoring the range from 1273 K to 1573 K (1000 °C to 1300 °C) with a strain rate of 0.1 s−1). To ensure the convergence of the FE calculation, an approximated method was used to estimate the flow stress at temperatures greater than 1573 K (1300 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. M. Sellars, W. J. Mc Tegart: Acta Metall., 1966, vol. 14, pp. 1136-38.

    Article  Google Scholar 

  2. L. Anand: ASME J. Eng. Mater. Technol., 1982, vol. 104, pp. 12-17.

    Article  Google Scholar 

  3. S. B. Brown, K. H. Kim,L. Anand: Int. J. Plasticity, 1989, vol. 5, pp. 95-130.

    Article  Google Scholar 

  4. G.R. Johnson and W.H. Cook: Proc. 7th Int. Symp., Ballistics. 1983, pp. 541–47.

  5. F. J. Zerilli, R. W. Armstrong: J. Appl. Phys., 1987, vol. 61, pp. 1816-25.

    Article  Google Scholar 

  6. D.S. Fields and W.A. Bachofen: ASTM. In Proc. Am. Soc. Test Mater., 1957, vol. 57, pp. 1259–72.

  7. H. Mirzadeh: Mech Mater, 2015, Vol. 85, pp. 66-79.

    Article  Google Scholar 

  8. R. Baktash, H. Mirzadeh: J. Eng. Mater. Technol, 2016, vol. 138, 021004.

    Article  Google Scholar 

  9. T. Mirzaie, H. Mirzadeh, J. M. Cabrera: Mech Mater, 2016, Vol. 94, pp. 38-45.

    Article  Google Scholar 

  10. P. F. Kozlowski, B. G. Thomas, J. A. Azzi, H. Wang: Metall. Trans. A, 1992. Vol. 23, pp. 903-918.

    Article  Google Scholar 

  11. P. J. Wray: Metall. Trans. A, 1982, vol. 13, pp. 125-34.

    Article  Google Scholar 

  12. T. Suzuki, K. H. Tacke, K. Wunnenberg, K. Schwerdtfeger: Ironmaking and Steelmaking, 1988, vol. 15, pp. 90-100.

    Google Scholar 

  13. H. N. Han, Y Lee, K H Oh, D. N. Lee: Mater. Sci. Eng. A, 1996, vol. 206, pp. 81-89.

    Article  Google Scholar 

  14. F. Garofalo: Trans. Metall. Sot. AIME, 1963, vol. 227, pp. 351-56.

    Google Scholar 

  15. M. Uehara, I. V. Samarasekera, J. K. Brimacombe: Ironmaking and Steelmaking, 1986, vol. 13, pp. 138-53.

    Google Scholar 

  16. D. J. Seol, Y. M. Won, T. Yeo, K. H. Oh, J. K. Park, C. H. Yim: ISIJ Int., 1999, vol. 39, pp. 91-98.

    Article  Google Scholar 

  17. Y. M. Won, T. Yeo, D. J. Seol, K. H. Oh: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 779-94.

    Article  Google Scholar 

  18. J. K. Park, B. G. Thomas, I. V. Samarasekera: Ironmaking and Steelmaking, 2002, vol. 29, pp. 359-75.

    Article  Google Scholar 

  19. J. Fu, J. Li, H. Zhang: Acta Metall. Sin., 2010, vol. 46, pp. 91-96.

    Article  Google Scholar 

  20. S. Koric B. G. Thomas: J. Mater. Process. Technol., 2008, vol. 197, pp. 408-18.

    Article  Google Scholar 

  21. Z. Cai, M. Zhu: Acta Metall. Sin., 2011, vol. 47, pp. 671-77.

    Google Scholar 

  22. C. Ji, C. Wu, M. Zhu: JOM, 2016, vol. 68, pp. 3107-15.

    Article  Google Scholar 

  23. F. Yin, L. Hua, H. Mao, X. Han: Mater. Des., 2013, vol. 43, pp. 393-401.

    Article  Google Scholar 

  24. M. Militzer, E. B. Hawbolt, and T. R. Meadowcroft: Metall. Mater. Trans. B, 2000, vol. 31, pp. 1247-59.

    Article  Google Scholar 

  25. H. Yu, X. Liu, X. Li, A. Godbole: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1001-1009.

    Article  Google Scholar 

  26. X. Shen, S. Tang, J. Chen, Z. Liu and G. Wang: ISIJ International, 2015, vol. 55, pp. 2657-2660.

    Article  Google Scholar 

  27. M. E. Mehtedi, F. Gabrielli, S. Spigarelli: Mater. Des., 2014, vol. 53, pp. 398-404.

    Article  Google Scholar 

  28. C. Yue, L. Zhang, S. Liao, H. Gao: Comput. Mater. Sci., 2009, vol. 45, pp. 462-66.

    Article  Google Scholar 

  29. M. Buchholz, V. Uhlenwinkel, A. Freyberg, K. Bauckhage: Mater. Sci. Eng. A, 2002, vol. 326, pp. 165-75.

    Article  Google Scholar 

  30. H. K. D. H. Bhadeshia: Prog. Mater. Sci., 2012, vol. 57, pp. 268-435.

    Article  Google Scholar 

  31. C. M. Sellars, W M. Tegart: Int. Metall. Rev., 1972, vol. 17, pp. 1-24.

    Google Scholar 

  32. Z. J. Pu, K. H. Wu, J. Shi, D. Zou: Mater. Sci. Eng. A, 1995, vol. 192/193, pp. 780-87.

    Article  Google Scholar 

  33. D. Samantaray, S. Mandal, A. K. Bhaduri: Mater. Des. 2010, vol. 31, pp. 981-84.

    Article  Google Scholar 

  34. S. Mandal, V. Rakesh, P. V. Sivaprasad, S. Venugopal, K. V. Kasiviswanathan: Mater. Sci. Eng. A, 2009, vol. 500, pp. 114-21.

    Article  Google Scholar 

  35. C. Zener, J. H. Hollomon: J. Appl. Phys., 1944, vol. 15, pp. 22-32.

    Article  Google Scholar 

  36. K. Duraisamy, J. D. Baeder: SIAM J. Sci.Comput., 2007, vol. 29, pp. 2607-20.

    Article  Google Scholar 

  37. S. B. Hosseini, T. Beno, U. Klement, J. Kaminski, K. Ryttbergc: J. Mater. Process. Technol., 2014, vol. 214, pp. 1293–1300.

    Article  Google Scholar 

  38. X. Xiao, G. Q. Liu, B. F. Hua, X. Zheng, L. N. Wang, S. J. Chen, A. Ullah: Comput. Mater. Sci., 2012, vol. 62, pp. 227-34.

    Article  Google Scholar 

  39. G. Ji, F. Li, Q. Li, H. Li, Z. Li: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4774-82.

    Article  Google Scholar 

  40. H. Mirzadeh, J. M. Cabrera, A. Najafizadeh, Acta Mater, 2011, vol. 59 pp. 6441–48.

    Article  Google Scholar 

  41. J. M. Cabrera, J. J. Jonas, J. M. Prado. Mater Sci Technol, 1996, vol. 12, pp. 579-85.

    Article  Google Scholar 

  42. H. J. Frost, M. F. Ashby. Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Oxford: Pergamon Press; 1982.

    Google Scholar 

  43. Deformation-mechanism maps: the plasticity and creep of metals and ceramics. http://engineering.dartmouth.edu/defmech.

Download references

Acknowledgments

The current study is financially supported by the National Key Research and Development Program of China (2016YFB0300105); the National Natural Science Foundation of China (51474058, U1560208 and U1708259); the Program for Liaoning Excellent Talents in University (LJQ2015036) and the Fundamental Research Funds for the Central Universities of China (N150205002). Special thanks are due to our cooperating company for help during industrial trials and application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Ji.

Additional information

Manuscript submitted June 27, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Wang, Z., Wu, C. et al. Constitutive Modeling of the Flow Stress of GCr15 Continuous Casting Bloom in the Heavy Reduction Process. Metall Mater Trans B 49, 767–782 (2018). https://doi.org/10.1007/s11663-018-1188-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1188-9

Keywords

Navigation