Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 4, pp 1883–1897 | Cite as

Effect of Cooling Rate on Microsegregation During Solidification of Superalloy INCONEL 718 Under Slow-Cooled Conditions

  • Xiao Shi
  • Sheng-Chao Duan
  • Wen-Sheng Yang
  • Han-Jie Guo
  • Jing Guo
Article
  • 214 Downloads

Abstract

The solidification sequence, microstructural evolution, solid-liquid interface variation, interdendritic segregation, and elemental distribution of as-cast IN718 alloy at three slow-cooling rates (5, 10, and 20 °C/min) were investigated by differential scanning calorimetry (DSC), confocal laser scanning microscopy (CLSM), optical microscopy (OM), field-emission scanning electron microscopy (FESEM), and electron-probe microanalysis (EPMA) techniques. The results indicate that as the cooling rate decreases, the constitutional supercooling at the solidification front affects the solid-liquid interface more significantly, and the size and quantity of the Laves phase increase. However, the composition of the Laves phase is insensitive to the cooling rate in the range of conditions studied here. In dendrite core, the contents of Ni, Cr, Fe, and Al follow a slight downward trend with an increasing cooling rate, whereas the Nb, Mo, and Ti contents show an upward trend. Additionally, Mo shows a stronger propensity to segregate under slow-cooling conditions because its effective partition coefficient almost linearly decreased with decreasing cooling rate, which is same as Nb. Using the parameters experimentally determined in this study and the Clyne–Kurz equation, we achieved reasonable agreement between the calculated and measured liquid composition change during the solidification process at different cooling rates. All experimental and theoretical programs in this research were undertaken with the aim of gaining further understanding of the microsegregation behaviors in large-scale IN718 ingots, whose cooling rates are within a lower range.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC) Grant No. U1560203 and the Fundamental Research Fund for the Central Universities of China No. FRF-TP-16-079A1.

References

  1. 1.
    Q.Z. Zuo, F. Liu, L. Wang, and C. Chen: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3014–3027.CrossRefGoogle Scholar
  2. 2.
    D.H. Ping, Y.F. Gu, C.Y. Cui, and H. Harada: Mater. Sci. Eng. A, 2007, vol. 456, pp. 99−102.CrossRefGoogle Scholar
  3. 3.
    D.K. Oh, C.Y. Jo, H.C. Kim, J.H. Lee, and S.L. Lee: Met. Mater. Int., 2000, vol. 6, pp. 311−315.CrossRefGoogle Scholar
  4. 4.
    A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado: J. Mater. Process. Tech., 2006, vol. 177, pp. 469−472.CrossRefGoogle Scholar
  5. 5.
    Y.C. Liu, Q.Y. Guo, C. Li, Y.P. Mei, X.S. Zhou, Y. Huang, and H.J. Li: Acta Metall. Sin., 2016, vol. 52, pp. 1259−1266.Google Scholar
  6. 6.
    J.N. DuPont, C.V. Robino, J.R. Michael, M.R. Notis, and A.R. Marder: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2785−2796.CrossRefGoogle Scholar
  7. 7.
    G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, Jr., and W.F. Hammetter: Metall. Trans. A, 1989, vol. 20A, pp. 2149−2158.CrossRefGoogle Scholar
  8. 8.
    W.D. Cao: Superalloys 718, 625 and Various Derivatives, TMS, Warrendale, PA, 1991.Google Scholar
  9. 9.
    Manikandan SGK, Sivakumar D, Prasad Rao K, and Kamaraj M, J. Mater. Process. Tech., 2014, vol. 214, pp. 3141–3149.CrossRefGoogle Scholar
  10. 10.
    A.G. Kostryzhev, P. Mannan, O.O. Marenych: J. Mater. Sci., 2015, vol. 50, pp. 7115−7125.CrossRefGoogle Scholar
  11. 11.
    N.B. Dahotre, M.H. McCay, T.D. McCay, C.R. Hubbard, W.D. Porter, and O.B. Cavin: Scripta Metall. Mater., 1993, vol. 28, pp. 1359−1364.CrossRefGoogle Scholar
  12. 12.
    T.J. Watt, E.M. Taleff, L.F. Lopez, J. Beaman, and R. Williamson: Solidification mapping of a nickel alloy 718 laboratory VAR ingot, TMS, San Antonio, TX, 2013.Google Scholar
  13. 13.
    J.J. Blecher, T.A. Palmer, and T. Debroy: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2142−2151.CrossRefGoogle Scholar
  14. 14.
    W. Yang, K.M. Chang, W. Chen, S. Mannan, and J. Debarbadillo: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 397−406.CrossRefGoogle Scholar
  15. 15.
    C. Frueh, D.R. Poirier, R.G. Erdmann, and S.D. Felicelli: Mater. Sci. Eng. A, 2003, vol. 345, pp. 72−80.CrossRefGoogle Scholar
  16. 16.
    Z.D. Long, X.B. Liu, W.H. Yang, K.M. Chang, and E. Barbero: Mater. Sci. Eng. A, 2004, vol. 386, pp. 254−261.CrossRefGoogle Scholar
  17. 17.
    SGK Manikandan, D Sivakumar, K. Prasad Rao, and M. Kamaraj: Mater. Charac., 2015, vol. 100, pp. 192−206.CrossRefGoogle Scholar
  18. 18.
    L. Wang, Y.J. Yao, J.X. Dong, and M.C. Zhang: Chem. Eng. Commun., 2010, vol. 197, pp. 1571−1585.CrossRefGoogle Scholar
  19. 19.
    T. Antonsson, and H. Fredriksson: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 85−96.CrossRefGoogle Scholar
  20. 20.
    S.G.K. Manikandan, D. Sivakumar, K.P. Rao, and M. Kamaraj: J. Mater. Process. Tech., 2014, vol. 214, pp. 358−364.CrossRefGoogle Scholar
  21. 21.
    Y.N. Yu: Foundation of Materials Science, China Higher Education Press, Beijing, 2006, pp. 636−680.Google Scholar
  22. 22.
    J. Li, L.X. Yu, W.R. Sun, W.H. Zhang, F. Liu, F. Qi, S.R. Guo, and Z.L. Hu: Chin. J. Mater. Res., 2010, vol. 2, pp. 118−122.Google Scholar
  23. 23.
    Z.J. Miao, A.D. Shan, W. Wang, J. Lu, W.L. Xu, and H.W. Song: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 236−242.CrossRefGoogle Scholar
  24. 24.
    H. Shibata, H. Yin, S. Yoshinaga, T. Emi, and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 149−156.CrossRefGoogle Scholar
  25. 25.
    J.N. DuPont: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3612−3620.CrossRefGoogle Scholar
  26. 26.
    W. Kurz, and D.J. Fisher: Acta Metall., 1981, vol. 29, pp. 11−20.CrossRefGoogle Scholar
  27. 27.
    M.J. Perricone, and J.N. DuPont: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1267−1280.CrossRefGoogle Scholar
  28. 28.
    S. Biswas, G.M. Reddy, T. Mohandas, and C.V.S Murthy: J. Mater. Sci., 2004, vol. 39, pp. 6813−6815.CrossRefGoogle Scholar
  29. 29.
    T.W. Clyne, and W. Kurz: Metall. Trans. A, 1981, vol. 12A, pp. 965−971.CrossRefGoogle Scholar
  30. 30.
    T.F. Bower, H.D. Brody, and M.C. Flemings: Trans. TMS-AIME, 1966, vol. 236, pp. 624−633.Google Scholar
  31. 31.
    E. Scheil: Z. Metallkd., 1942, vol. 34, pp. 70−72.Google Scholar
  32. 32.
    M.J. Cieslak, T.J. Headley, G.A. Knorovsky, A.D. Romig, Jr., and T. Kollie: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 479−488.CrossRefGoogle Scholar
  33. 33.
    L. Nastac: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 44−50.CrossRefGoogle Scholar
  34. 34.
    Y.A. Meng, and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685−705.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Xiao Shi
    • 1
    • 2
  • Sheng-Chao Duan
    • 1
    • 2
  • Wen-Sheng Yang
    • 1
    • 2
  • Han-Jie Guo
    • 1
    • 2
  • Jing Guo
    • 1
    • 2
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Key Laboratory of Special Melting and Preparation of High-End Metal MaterialsBeijingChina

Personalised recommendations