Skip to main content
Log in

Removal of Non-metallic Inclusions from Nickel Base Superalloys by Electromagnetic Levitation Melting in a Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Samples of INCONEL 718 were levitated and melted in a slag by the application of an electromagnetic field. The effects of temperature, time, and slag composition on the inclusion content of the samples were studied thoroughly. Samples were compared with the original alloy to study the effect of the process on inclusions. Size, shape, and chemical composition of remaining non-metallic inclusions were investigated. The samples were prepared by Standard Guide for Preparing and Evaluating Specimens for Automatic Inclusion Assessment of Steel (ASTM E 768-99) method and the results were reported by means of the Standard Test Methods for Determining the Inclusion Content of Steel (ASTM E 45-97). Results indicated that by increasing temperature and processing time, greater level of cleanliness could be achieved, and numbers and size of the remaining inclusions decreased significantly. It was also observed that increasing calcium fluoride content of the slag helped reduce inclusion content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Briant: Materials and Manufacturing Processes, 2000, vol. 15, pp. 155-156.

    Article  Google Scholar 

  2. S. Zhao, X. Xie, G. D. Smith, and S. J. Patel: Materials Science and Engineering: A, 2003, vol. 355, pp. 96-105.

    Article  Google Scholar 

  3. R. Kiessling: Met. Sci., 1980, vol 14 (5), pp. 161-172.

    Google Scholar 

  4. T. Lund and J. Åkesson: Effect of Steel Manufacturing Processes on the Quality of Bearing Steels, ed. J.J.C. Hoo, ASTM International, West Conshohocken, 1988, pp. 308–29.

  5. Y. Tomita: Materials Science and Technology, 1995, vol. 11, pp. 508-513.

    Article  Google Scholar 

  6. H. Atkinson and G. Shi: Progress in Materials Science, 2003, vol. 48, pp. 457-520.

    Article  Google Scholar 

  7. J. Lankford: International Metals Reviews, 1977, vol. 22, pp. 221-228.

    Article  Google Scholar 

  8. S. Paul and A. Ray: Journal of Materials Engineering and Performance, 1997, vol. 6, pp. 27-34.

    Article  Google Scholar 

  9. S. Yamaguchi, H. Kobayashi, T. Matsumiya, and S. Hayami: Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1980, vol. 295, pp. 122.

    Article  Google Scholar 

  10. A. Bromley and R. Parker: Metals Technology, 1984, vol. 11, pp. 419-427.

    Article  Google Scholar 

  11. C.T. Sims, N.S. Stolof and W.C. Hagel: Superalloys II: High Temperature Materials for Aerospace and Industrial Power, Wiley, New York, 1987.

    Google Scholar 

  12. Y. Haruna: Theses Dissertations, University of British Colombia, 1994.

  13. P. Quested, M. McLean, and M. Winstone: Proceedings of Superalloys 1988, TMS/AIME, Warrendale, pp. 387–96.

  14. M. Halali, M. McLean, and D.R.F. West: Materials Science and Technology, 2000, vol. 16, pp. 457-462.

    Article  Google Scholar 

  15. S. Ahmadi, H. Arabi, A. Shokuhfar, and A. Rezaei: Journal of Materials Science & Technology, 2009, vol. 25, pp. 592-596.

    Google Scholar 

  16. F. Binczyk, J. Cwajna, S. Roskosz, and P. Gradoń: Archives of Foundry Engineering, 2012, vol. 12, pp. 5–10.

    Google Scholar 

  17. [17] H. Matysiak, J. Michalski, A. Balkowiec, K. Sikorski, and K. Kurzydłowski: Materials Science-Poland, 2009, vol. 27 (4/1), pp. 1103-1110.

    Google Scholar 

  18. H. Matysiak, M. Zagorska, J. Andersson, A. Balkowiec, R. Cygan, M. Rasinski, et al., Materials, 2013, vol. 6, pp. 5016-5037.

    Article  Google Scholar 

  19. L. Zhang, B. G. Thomas, K. Cai, J. Cui, and L. Zhu: ISS Tech 2003 Conference Proceedings, ISS-AIME, Warrnedale, pp. 141–56.

  20. H.P. Wang, B.C. Luo, T. Qin, J. Chang, and B. Wei: J. Chem. Phys. 2008, 129(12), 124.

    Article  Google Scholar 

  21. M. Przyborowski, T. Hibiya, M. Eguchi, I. Egri: Journal of Crystal Growth, 1995, vol. 151 (1-2), pp. 60-65.

    Article  Google Scholar 

  22. G. Betz, M.G. Frohberg: High Temp. High Press., 1980, vol. 12, pp. 169-178.

    Google Scholar 

  23. K. Ohsaka, J.C. Holzer, E.H. Trinh, and W.L. Johnson: Proceedings of the 4th International Conference Experimental Methods for Microgravity Materials Science Research, 1992, ed. R.A. Schiffman, San Diego, pp. 1–6.

  24. G.P. Hansen, S. Krishnan, R.H. Hauge, J.L. Margrave: Appl. Opt. 1989, 28(10), 1885–1896.

    Article  Google Scholar 

  25. B. Guo: MSc thesis, Auburn University, 2006.

  26. M. Halali: Solubility of Nitrogen in UDMET720, unpublished work.

  27. M Halali, D.R.F. West, and M. McLean: Proceedings of the 8th International Symposium Super Alloys, Seven Springs, 1996.

  28. M. Malekzadeh, M. Halali: Chemical Engineering Journal 2011, vol. 168, pp. 441–445.

    Article  Google Scholar 

  29. A. Vahid Mohammadi, M. Halali: RSC Adv. 2014, vol. 4, pp. 7104-7108.

    Article  Google Scholar 

  30. J. Szekely, E. Schwartz, R. Hyers: JOM 1995, vol. 47 (5), pp. 50–53.

    Article  Google Scholar 

  31. Z.A. Moghimi, M. Halali, M. Nusheh: Metallurgical & Materials Transactions B 2006, vol. 37B (6), pp. 997-1005.

    Article  Google Scholar 

  32. A.A. Roy, V. Bojarevics, and K.A. Pericleous: Proceedings of the COMSOL Conference 2011, Stuttgart, Germany.

  33. A. Zaitsev, N. Korolyov, and B. Mogutnov: Journal of Materials Science, 1991, vol. 26, pp. 1588-1600.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Halali.

Additional information

Manuscript submitted May 21, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjili, M.H., Halali, M. Removal of Non-metallic Inclusions from Nickel Base Superalloys by Electromagnetic Levitation Melting in a Slag. Metall Mater Trans B 49, 61–68 (2018). https://doi.org/10.1007/s11663-017-1137-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1137-z

Keywords

Navigation